摘要:
An illuminating lens includes a main body and a ring portion. The main body has a light exit surface, and the light exit surface has a first light exit surface recessed toward a point on the optical axis and a second light exit surface extending outwardly from the periphery of the first light exit surface. The first light exit surface has a transmissive region in the center thereof, and a total reflection region on the peripheral side thereof. The ring portion has a back surface configured to guide the light that has been emitted from a light source, totally reflected repeatedly at the light exit surface, and then entered the ring portion to an end surface by total reflection.
摘要:
A light exit surface of an illuminating lens has a first light exit surface and a second light exit surface. The first light exit surface is recessed toward a point on the optical axis, and the second light exit surface extends outwardly from the periphery of the first light exit surface. The first light exit surface has a transmissive region and a total reflection region. When the position of a light source on the optical axis is defined as a starting point, the transmissive region transmits light that has been emitted from the starting point at a relatively small angle with respect to the optical axis, and the total reflection region totally reflects light that has been emitted from the starting point at a relatively large angle with respect to the optical axis. A reflective layer is formed on a bottom surface that surrounds a light entrance surface and faces oppositely to the light exit surface. The reflective layer reflects light that has been emitted from the light source, totally reflected repeatedly at the light exit surface, and then reached the bottom surface.
摘要:
Provided is a backlight device having: a light source element having light emitting diodes and a lens expanding light from the light emitting diodes; a housing containing the light source element; a diffuser plate covering an opening portion of the housing; and a reflection sheet reflecting light emitted from the light source element, toward the diffuser plate. In the light source element, a plurality of the lenses are arranged at a central zone, the plurality of lenses being arranged in a plurality of rows.
摘要:
A lighting device includes a light emitting element that emits a first colored light; a phosphor layer disposed on the light emitting element; and a lens part that is disposed so as to cover the light emitting element and the phosphor layer, and radiates light entering inside of the lens part so as to spread the light radially. The phosphor layer allows a part of the first colored light to transmit therethrough and converts another part of the first colored light into a second colored light having a wavelength longer than that of the first colored light. The lens part has: a base portion forming a light entrance surface through which the first colored light and the second colored light enter the lens part; and a diffraction portion forming a light exit surface through which the first colored light and the second colored light exit the lens part, the diffraction portion being configured so that a refracting power with respect to the second colored light is larger than a refracting power with respect to the first colored light.
摘要:
An illuminating lens includes: a light entrance surface through which light emitted from a light source enters the lens; and a light exit surface through which the light that has entered the lens exits the lens. The light exit surface has: a concave portion intersecting the optical axis; and a convex portion provided around the concave portion to extend continuously from the concave portion. The light exit surface is formed in a shape such that a curvature C of micro-segments of the light exit surface in a cross section including the optical axis has a maximum value at a position outward from the midpoint of the convex portion.
摘要:
A light emitting device (1) is configured to radiate light with an optical axis A at the center, and is provided with a light source (2), and a lens (3) that radially expands the light from light source (2). The light source (2) has a light emitting surface (21) extending in an X direction orthogonal to the optical axis A. The lens (3) is configured to have a greater refractive power in a Y direction orthogonal to the X direction than in the X direction. For example, the lens (3) has a light entrance surface (31) including an anamorphic curved surface with different curve forms between the X direction and the Y direction.
摘要:
A lighting device includes a light emitting element that emits a first colored light; a phosphor layer disposed on the light emitting element; and a lens part that is disposed so as to cover the light emitting element and the phosphor layer, and radiates light entering inside of the lens part so as to spread the light radially. The phosphor layer allows a part of the first colored light to transmit therethrough and converts another part of the first colored light into a second colored light having a wavelength longer than that of the first colored light. The lens part has: a base portion forming a light entrance surface through which the first colored light and the second colored light enter the lens part; and a diffraction portion forming a light exit surface through which the first colored light and the second colored light exit the lens part, the diffraction portion being configured so that a refracting power with respect to the second colored light is larger than a refracting power with respect to the first colored light.
摘要:
An image reading device comprising a rotary polygon mirror (6) for scanning a light flux from a light source (1), an imaging optical system (4) for forming on a reflection plane of the mirror (6) a linear image larger than the width in a main scanning direction of the one reflection plane, and a curved-face mirror (7), wherein the light source (1), the imaging optical system (4), the rotary polygon mirror (6) and the curved-face mirror (7) are disposed in different positions in a sub-scanning direction, a light flux from the imaging optical system (4) shines obliquely onto the polygon mirror (6), and a light flux reflected off the mirror (6) beams obliquely onto the curved-face mirror (7). Since one curved-face mirror can beam a light flux reflected from the rotary polygon mirror onto a surface to be scanned and the rotary polygon mirror having a small inscribed radius and many reflection planes can be used, satisfactory optical performance and high-speed feature can be realized.
摘要:
The present invention relates to a surface light source, including a light source section made up of plural light emitting diodes and lenses that expand light from these light emitting diodes. The lens in the light source section has a light incident surface on which light from the light emitting diode is incident with an optical axis at a center, and a light exit surface that expands and emits the incident light. The light incident surface has a continued depressed surface, while the light exit surface has a continued projected surface. The lens performs such that “sag Y” decreases from a maximum value “sag Y0” with an increment of “θi”, where θi is an angle included between a straight line, connecting an arbitrary point on the light exit surface and a base point on the optical axis which corresponds to a position of the light emitting diode, and the optical axis; sag Y is a distance measured in a light axis direction from the base point on the optical axis to the arbitrary point on the light exit surface; and “sag Y0” is a value of sag Y when angle θi is 0 (zero) degree, and wherein the light exit surface except a vicinity of the optical axis takes a shape satisfying a relation of 10 degrees
摘要翻译:本发明涉及一种面光源,包括由多个发光二极管构成的光源部分和从这些发光二极管扩展光的透镜。 光源部分中的透镜具有光入射表面,来自发光二极管的光以其中心的光轴入射,并且光出射面扩张并发射入射光。 光入射表面具有持续的凹陷表面,而光出射表面具有连续的突出表面。 透镜进行使得“下垂Y”以最大值“sag Y0”以“&thetas; i”的增量减小,其中&amp; i; i是包括在连接光出射表面上的任意点的直线之间的角度 以及对应于发光二极管的位置和光轴的光轴上的基点; 下垂Y是从光轴的基点到光出射面的任意点的光轴方向测定的距离; “sag Y0”是当角度θ为0时(零度)为sag Y的值,除了光轴附近以外的光出射面为满足关系式10°<&amp; t s; min < 30度,其中&thetas;我采取最小值,即最小值,即在包括光轴的截面图中的光出射表面上的微小部分的曲率C为最小值时的最小值。
摘要:
An illuminating lens has a light entrance surface and a light exit surface. The light exit surface has a first light exit surface recessed toward a point on an optical axis A and a second light exit surface extending outwardly from the periphery of the first light exit surface. The first light exit surface includes a transmissive region located in the center of the first light exit surface and a total reflection region located around the transmissive region. The transmissive region transmits light that has been emitted from a starting point Q, which is the position of a light source on the optical axis A, at a relatively small angle with respect to the optical axis A. The total reflection region totally reflects light that has been emitted from the starting point Q at a relatively large angle with respect to the optical axis A.