摘要:
Seizure resistance and wear resistance of Cu—Bi—In copper-alloy sliding material are enhanced by forming a soft phase of as pure as possible Bi. Mixed powder of Cu—In cuprous alloy powder and Cu—Bi containing Cu-based alloy powder is used. A sintering condition is set such that Bi moves outside particles of said Cu—Bi containing Cu-based powder and forms a Bi grain-boundary phase free of In, and In diffuses from said Cu—In containing Cu-based powder to said Cu—Bi containing Cu-based powder.
摘要:
Seizure resistance and wear resistance of Cu—Bi—In copper-alloy sliding material are enhanced by forming a soft phase of as pure as possible Bi. Mixed powder of Cu—In cuprous alloy powder and Cu—Bi containing Cu-based alloy powder is used. A sintering condition is set such that Bi moves outside particles of said Cu—Bi containing Cu-based powder and forms a Bi grain-boundary phase free of In, and In diffuses from said Cu—In containing Cu-based powder to said Cu—Bi containing Cu-based powder.
摘要:
When a Cu—Sn—Bi had-particle based sliding material is used for sliding, Cu of Cu matrix flows and covers up Bi phase. Seizure resistance lowers as time passes. A Pb-free sliding material preventing the reduction of seizure resistance is provided. (1) Composition: from 1 to 15% of Sn, from 1 to 15% of Bi, from 0.02 to 0.2% of P, and from 1 to 10% of hard particles having an average diameter of from 50 to 70 μm, with the balance being Cu and unavoidable impurities. (2) Structure: Bi phase and the hard particles are dispersed in the copper matrix, and all of said hard particles are bonded to the copper matrix.
摘要:
When a Cu—Sn—Bi had—particle based sliding material is used for sliding, Cu of Cu matrix flows and covers up Bi phase. Seizure resistance lowers as time passes. A Pb-free sliding material preventing the reduction of seizure resistance is provided. (1) Composition: from 1 to 15% of Sn, from 1 to 15% of Bi, from 0.02 to 0.2% of P, and from 1 to 10% of hard particles having an average diameter of from 50 to 70 μm, with the balance being Cu and unavoidable impurities. (2) Structure: Bi phase and the hard particles are dispersed in the copper matrix, and all of said hard particles are bonded to the copper matrix.
摘要:
In a Cu—Bi based sintered alloy, to which hard particles, such as Fe3P, are added, the main constituent components of the microstructure are a Cu matrix, Bi phase and the hard particles. In the sintering method of the present invention, the flow of the Bi phase is suppressed to as low level as possible. The novel structure is that the contact between the Bi phase and hard particles is kept to a low ratio. A lead-free bearing used for a fuel injection pump according to the present invention contains from 1 to 30 mass % of Bi and from 0.1 to 10 mass % of hard particles having from 10 to 50 μm of the average particle diameter, the balance being Cu and unavoidable impurities. The properties of the main component phases are utilized at a high level such that the sliding properties are equivalent to those of a Pb containing Cu-based sintered alloy.
摘要翻译:在添加了Fe 3 P 3等硬质粒子的Cu-Bi系烧结合金中,微观结构的主要构成成分是Cu基体,Bi相和硬质粒子。 在本发明的烧结方法中,Bi相的流动被抑制到尽可能低的水平。 新颖的结构是将Bi相与硬质颗粒之间的接触保持在较低的比例。 根据本发明的用于燃料喷射泵的无铅轴承包含1至30质量%的Bi和0.1至10质量%的平均粒径为10至50微米的硬颗粒,余量为 Cu和不可避免的杂质。 主要组分相的性质被利用在高水平,使得滑动性能等于含Pb的Cu基烧结合金的滑动性能。
摘要:
In a Cu—Bi based sintered alloy, to which hard particles, such as Fe3P, are added, the main constituent components of the microstructure are a Cu matrix, Bi phase and the hard particles. In the sintering method of the present invention, the flow of the Bi phase is suppressed to as low level as possible. The novel structure is that the contact between the Bi phase and hard particles is kept to a low ratio. A lead-free bearing used for a fuel injection pump according to the present invention contains from 1 to 30 mass % of Bi and from 0.1 to 10 mass % of hard particles having from 10 to 50 μm of the average particle diameter, the balance being Cu and unavoidable impurities. The properties of the main component phases are utilized at a high level such that the sliding properties are equivalent to those of a Pb containing Cu-based sintered alloy.
摘要:
[Task] The adhesion resistance of Cu—Bi based or Cu—Sn—Bi based alloy is lower than that of Cu—Sn—Pb based alloy, and also since conformability of the former alloy is low. Therefore, when Bi of the former alloy adheres onto an opposite shaft, seizure of the former alloy is likely to occur as compared with the case of the latter Cu—Sn—Pb based alloy. In is alloyed in the Bi phase of the Cu—Sn—Bi—In based copper alloy. The In-alloyed Bi phase has a considerably low melting point and therefore the sliding properties deteriorate.[Means for Solving] A Pb-free copper-based sintered sliding material has a composition that 0.5 to 15.0 mass % Bi and 0.3 to 15.0 mass % In, with the balance being Cu and inevitable impurities. With regard to the existence of Cu, Bi, and In, the material consists of a Cu matrix containing In, a Bi phase, and an In concentrated region in said Cu matrix at a boundary of said Bi phase.
摘要:
In a Pb-free copper-based sintered alloy containing from 1 to 30% of Bi and from 0.1 to 10% of hard matter particles having from 10 to 50 μm of average particle diameter, the Bi phase has a smaller average particle diameter than that of the hard matter particles and is dispersed in the Cu matrix, or the hard matter particles having 50% or less of a contact length ratio with the Bi phase based on the total circumferential length of the hard particle, which are in contact with said Bi phase, are present in a ratio of 70% or more based on the entire number of the hard matter particles.
摘要:
When a Cu—Sn—Bi had-particle based sliding material is used for sliding, Cu of Cu matrix flows and covers up Bi phase. Seizure resistance lowers as time passes. A Pb-free sliding material preventing the reduction of seizure resistance is provided. (1) Composition: from 1 to 15% of Sn, from 1 to 15% of Bi, from 0.02 to 0.2% of P, and from 1 to 10% of hard particles having an average diameter of from 50 to 70 μm, with the balance being Cu and unavoidable impurities. (2) Structure: Bi phase and the hard particles are dispersed in the copper matrix, and all of said hard particles are bonded to the copper matrix.
摘要:
Seizure resistance and wear resistance of Cu—Bi—In copper-alloy sliding material are enhanced by forming a soft phase of as pure as possible Bi.Mixed powder of Cu—In cuprous alloy powder and Cu—Bi containing Cu-based alloy powder is used. A sintering condition is set such that Bi moves outside particles of said Cu—Bi containing Cu-based powder and forms a Bi grain-boundary phase free of In, and In diffuses from said Cu—In containing Cu-based powder to said Cu—Bi containing Cu-based powder.