Abstract:
A method for determining the seam location for each layer of a multilayer radome for use with an array antenna includes the steps of quantizing the radome thickness, and forming an image of the quantized thickness vs. line array position. Seam locations are assigned for an original population, and a genetic algorithm is iterated to optimize a cost function. The cost function is the level of all sidelobes other than the main lobe. The result of the genetic algorithm is an optimized set of seam locations. The radome is built with the seam locations corresponding to the optimized locations.
Abstract:
A method for determining the seam location for each layer of a multilayer radome for use with an array antenna includes the steps of quantizing the radome thickness, and forming an image of the quantized thickness vs. line array position. Seam locations are assigned for an original population, and a genetic algorithm is iterated to optimize a cost function. The cost function is the level of all sidelobes other than the main lobe. The result of the genetic algorithm is an optimized set of seam locations. The radome is built with the seam locations corresponding to the optimized locations.
Abstract:
A system includes a source of electromagnetic energy or power and an amplitude-sensitive circuit. An amplitude-limiting transmission line couples the source to the circuit. The transmission line includes a semiconductor in the field of the transmission line and a light source for illuminating the semiconductor with light responsive to the amplitude from the source. Application of energy or power to the light source illuminates the semiconductor, which produces a plasma. The plasma tends to attenuate the energy or power reaching the circuit.
Abstract:
A method of determining an effective atomic number, Zeff, of an object may include obtaining a plurality of radiographic images of the object. Each radiographic image can be obtained using a different independent X-ray energy level. An intensity value for each pixel in a region of interest in each radiographic image can be determined. A plurality of measured ratios, R, can be formed using attenuation coefficients from a pair of different radiographic images. At least one adjusted measured ratio, Rm, can be calculated based on the plurality of measured ratios, R, and at least one corresponding estimation coefficient, α. Zeff values can be assigned based on a comparison of the at least one adjusted measured ratio, Rm to a material attenuation database.