Abstract:
A solar cell includes a semiconductor substrate, a first intrinsic semiconductor layer and a second intrinsic semiconductor layer on the semiconductor substrate, the first intrinsic semiconductor layer and the second intrinsic semiconductor layer being spaced apart from each other, a first conductive semiconductor layer and a second conductive semiconductor layer respectively disposed on the first intrinsic semiconductor layer and the second intrinsic semiconductor layer, and a first electrode and a second electrode, each including a bottom layer on the first conductive semiconductor layer and the second conductive semiconductor layer, respectively, the bottom layer including a transparent conductive oxide, and an intermediate layer on the bottom layer, the intermediate layer being including copper.
Abstract:
A photovoltaic device includes a semiconductor substrate; an amorphous first conductive semiconductor layer on a first region of a first surface of the semiconductor substrate and containing a first impurity; an amorphous second conductive semiconductor layer on a second region of the first surface of the semiconductor substrate and containing a second impurity; and a gap passivation layer located between the first region and the second region on the semiconductor substrate, wherein the first conductive semiconductor layer is also on the gap passivation layer.
Abstract:
A solar cell including a first conductive type semiconductor substrate; a first intrinsic semiconductor layer on a front surface of the semiconductor substrate; a first conductive type first semiconductor layer on at least one surface of the first intrinsic semiconductor layer; a second conductive type second semiconductor layer on a back surface of the semiconductor substrate; a second intrinsic semiconductor layer between the second semiconductor layer and the semiconductor substrate; a first conductive type third semiconductor layer on the back surface of the semiconductor substrate, the third semiconductor layer being spaced apart from the second semiconductor layer; and a third intrinsic semiconductor layer between the third semiconductor layer and the semiconductor substrate.
Abstract:
A photovoltaic device includes a semiconductor substrate; an amorphous first conductive semiconductor layer on a first region of a first surface of the semiconductor substrate and containing a first impurity; an amorphous second conductive semiconductor layer on a second region of the first surface of the semiconductor substrate and containing a second impurity; and a gap passivation layer located between the first region and the second region on the semiconductor substrate, wherein the first conductive semiconductor layer is also on the gap passivation layer.
Abstract:
A solar cell including a first conductive type semiconductor substrate; a first intrinsic semiconductor layer on a front surface of the semiconductor substrate; a first conductive type first semiconductor layer on at least one surface of the first intrinsic semiconductor layer; a second conductive type second semiconductor layer on a back surface of the semiconductor substrate; a second intrinsic semiconductor layer between the second semiconductor layer and the semiconductor substrate; a first conductive type third semiconductor layer on the back surface of the semiconductor substrate, the third semiconductor layer being spaced apart from the second semiconductor layer; and a third intrinsic semiconductor layer between the third semiconductor layer and the semiconductor substrate.
Abstract:
A solar cell including a crystalline semiconductor substrate having a first conductive type; a first doping layer on a front surface of the substrate and being doped with a first conductive type impurity; a front surface antireflection film on the front surface of the substrate; a back surface antireflection film on a back surface of the substrate; an intrinsic semiconductor layer, an emitter, and a first auxiliary electrode stacked on the back surface antireflection film and the substrate; a second doping layer on the back surface of the substrate and being doped with the first impurity; an insulating film on the substrate and including an opening overlying the second doping layer; a second auxiliary electrode in the opening and overlying the second doping layer; a first electrode on the first auxiliary electrode; and a second electrode on the second auxiliary electrode and being separated from the first electrode.
Abstract:
A solar cell includes a base substrate having a first surface and a second surface opposite the first surface, the base substrate including a crystalline semiconductor and being configured to have solar light incident on the first surface, a doping pattern on a first portion of the second surface, the doping pattern including a first dopant, a first doping layer on a second portion of the second surface, the first doping layer including a second dopant, and the first and second portions of the second surface being different from each other, a first electrode on the first doping layer, and a second electrode on the doping pattern.
Abstract:
A solar cell and a method of manufacturing the solar cell, the solar cell including a first surface configured to receive incident sunlight and having a concavo-convex pattern, a substantially flat second surface opposite to the first surface, a first doped layer formed as a crystalline silicon layer having a first dopant, and a second doped layer formed as an amorphous silicon layer having a second dopant. The processes for forming these layers, with the exception of forming the first doped layer, are performed at a low temperature. Accordingly, reflectivity of sunlight may be minimized, a high terminal voltage may be generated, and a wafer including the solar cell can be kept from being bent.
Abstract:
A solar cell is provided with a hetero-junction front structure (e.g., P/N or P/I/N) and is further provided in a back portion of thereof with a passivation layer having a plurality of openings defined therethrough. A BSF-forming binder material and a back face electrode are provided contacting the back surface and are fired to thereby bind the back face electrode to the structure and to form a BSF region extending from the openings of the passivation layer.
Abstract translation:太阳能电池设置有异质结前结构(例如,P / N或P / I / N),并且在其后部还设置有具有通过其限定的多个开口的钝化层。 提供形成BSF的粘合剂材料和背面电极,其与后表面接触并被烧制,从而将背面电极结合到结构上并形成从钝化层的开口延伸的BSF区域。
Abstract:
A solar cell includes a semiconductor substrate including a first conductive type, a first amorphous silicon thin film layer disposed on the semiconductor substrate and a second amorphous silicon thin film layer including a second conductive type and disposed on the first amorphous silicon thin film layer. The first amorphous silicon thin film layer includes a first intrinsic silicon thin film layer, a second intrinsic silicon thin film layer facing the semiconductor substrate while interposing the first intrinsic silicon thin film layer therebetween and a first low concentration silicon thin film layer including the second conductive type and disposed between the first intrinsic silicon thin film layer and the second intrinsic silicon thin film layer.