Abstract:
An RF hollow cathode plasma source consists of a vacuum chamber, a pipe, a hollow cathode, at least two compartments, a conduit and input electrodes. The pipe is inserted into the chamber for introducing working gas into the chamber. The hollow cathode is disposed in the chamber and formed with a large number of apertures. At least two compartments are located below the hollow cathode. Each of the compartments includes small apertures for uniformly spreading the working gas into the apertures of the hollow cathode. The conduit is disposed along two sides of the hollow cathode to circulate cooling water around the hollow cathode. The plural input power leads are arranged near the hollow cathode. The input power leads, the pipe and the conduits are connected to the hollow cathode though the electrically-insulated walls of the grounded vacuum chamber.
Abstract:
A hollow-cathode plasma generator includes a plurality of hollow cathodes joined together and connected to a power supply for generating plasma in vacuum. Each of the hollow cathodes includes at least one fillister defined therein, a fin formed on a side of the fillister, an air-circulating tunnel in communication with the fillister and a coolant-circulating tunnel defined therein. The fillister is used to contain working gas. The fin receives negative voltage from the power supply for ionizing the working gas to generate the plasma and spread the plasma in a single direction. The working gas travels into the fillister from the air-circulating tunnel. The coolant-circulating tunnel is used to circulate coolant for cooling the hollow cathode.
Abstract:
A magnetron sputtering apparatus suitable for coating on a workpiece is provided. The magnetron sputtering apparatus includes a vacuum chamber, a holder, a magnetron plasma source and a high-power pulse power supply set, wherein the magnetron plasma source includes a base, a magnetron controller and a target. A reactive gas is inputted into the vacuum chamber, and the holder supporting the workpiece is disposed inside the vacuum chamber. The magnetron plasma source is disposed opposite to the workpiece, wherein the magnetron controller is disposed in the base, and the target is disposed on the base. The high-power pulse power supply set is coupled to the vacuum chamber, the magnetron plasma source and the holder, and a high voltage pulse power is inputted to the magnetron plasma source to generate plasma to coat a film on the surface of the workpiece.