Abstract:
A seed meter is provided for use with a row crop planter or seed planter that includes a seed disk assembly that rotates within a meter housing cavity and that has a seed disk assembly cavity in which a vacuum pressure is applied for pulling seeds into seed pockets of a seed disk of the seed disc assembly. The vacuum pressure is applied to the seed disk assembly by pulling a vacuum airflow through a spindle that supports the seed disk assembly. A wiper seal is arranged in a fixed position within the seed disk assembly cavity and seals against the seed disk assembly as a support plate and seed disk of the seed disk assembly rotate over the wiper seal, so that the wiper seal creates a boundary between a vacuum zone and a non-vacuum zone inside of the seed disc assembly cavity.
Abstract:
An agricultural implement system is provided that includes a down force cylinder configured to apply a downward force to a row unit, and a depth control cylinder configured to vary a penetration depth of a ground engaging tool of the row unit. The agricultural implement system also includes a valve assembly in fluid communication with the down force cylinder and the depth control cylinder. The valve assembly is configured to automatically adjust the downward force by varying fluid pressure within the down force cylinder based on fluid pressure within the depth control cylinder.
Abstract:
An apparatus for measuring at least one parameter of material and generating multiple frequency signals having frequencies selectable by control signals, combining the multiple frequency signals into a combined frequency signal having multiple frequency components, and applying the combined frequency signal as an excitation signal to a sensing element. The frequency response of the material is determined at each of the multiple frequencies using output signals from the sensing element, and a frequency analysis is performed to determine the parameters of the material. The sensing element may include a capaciflector sensor located non-intrusively along the surface of a conveyor. However, other sensing elements such as capacitive, resistive and inductive elements may be used. The parameters being measured may include mass flow rate and moisture content. The apparatus includes a frequency generating circuit for generating a frequency signal having multiple frequency components, a sensing circuit which applies the frequency signal as an excitation signal to a sensing element, a signal conditioning circuit which determines the frequency response of the material at the multiple frequencies based upon output signals from the sensing element, and a signal processing circuit for performing a frequency analysis. The apparatus may be used to measure parameters of material being moved by a vehicle-mounted conveyor. A pink or white noise generator may be used for the frequency generating circuit.
Abstract:
A seed meter is provided for use with a row crop planter or seed planter that includes a seed disk assembly that rotates within a meter housing cavity and that has a seed disk assembly cavity in which a vacuum pressure is applied for pulling seeds into seed pockets of a seed disk of the seed disc assembly. The vacuum pressure is applied to the seed disk assembly by pulling a vacuum airflow through a spindle that supports the seed disk assembly. A wiper seal is arranged in a fixed position within the seed disk assembly cavity and seals against the seed disk assembly as a support plate and seed disk of the seed disk assembly rotate over the wiper seal, so that the wiper seal creates a boundary between a vacuum zone and a non-vacuum zone inside of the seed disc assembly cavity.
Abstract:
A soil monitoring system is provided that includes a sensing shank, and a first sensor coupled to a leading edge of the sensing shank. The first sensor is configured to output first signals indicative of a pressure exerted on the first sensor by soil as the sensing shank is driven through the soil along a direction of travel. The soil monitoring system also includes a frame forming a channel oriented in a substantially vertical direction relative to a surface of the soil, and a carrier coupled to the sensing shank and disposed within the channel. The soil monitoring system further includes an actuator extending between the frame and the carrier. The actuator is configured to linearly drive the carrier in a reciprocating motion to vary a penetration depth of the sensing shank within the soil.
Abstract:
A seed planting assembly is provided having a plurality of planting units supported by a tool bar, each of which being operable to form a seed trench in soil, plant seeds in the seed trench, and close the seed trench. The seed trench defines a depth that is achieved via a pair of gauge wheels. A press wheel assembly packs the trench after it has been seeded and closed. The planting assembly links the forward gauge wheels with the rear press wheel assembly for reciprocal motion to reduce the trench depth displacement when either a gauge wheel or a press wheel travels over an obstacle.
Abstract:
A guitar includes a guitar body having a bridge, and an elongated neck having a first end connected to the guitar body and a second end joined to a head having a series of tuning pegs. A plurality of vibratable musical strings is stretched along the length of the neck between the tuning pegs and the bridge. A plurality of longitudinally spaced frets is fixedly mounted on the neck in spaced relationship beneath the strings. Each of the strings is adapted to be depressed against any one of the frets to produce a note of a particular pitch. The interval between a first note associated with one fret and a second note with the same name associated with another fret defines at least one octave unit. A fret attachment is disposed upon the guitar body between the first end of the neck and the bridge and is spaced beneath at least one of the strings. The fret attachment cooperates with at least one of the strings to define an additional octave level at which a third note sounds substantially identical to the second note at a higher pitch.
Abstract:
A planting unit is provided having a seed trench opener that forms a seed trench in a ground surface as the planting unit travels along the ground. A depth regulating member is provided that has a predetermined vertical position relative to the opener. The depth regulating member is operable to ride along the ground and thus predetermined the seed trench depth. A suspension assembly is provided to reduce the shock forces on the planting unit when obstacles are encountered. Furthermore, a suspension system is provided to the seed trench opener, in addition to the depth regulating member.
Abstract:
A seed planting assembly is provided having a plurality of planting units supported by a tool bar, each of which being operable to form a seed trench in soil, plant seeds in the seed trench, and close the seed trench. The seed trench defines a depth that is achieved via a pair of gauge wheels. A press wheel assembly packs the trench after it has been seeded and closed. The planting assembly links the forward gauge wheels with the rear press wheel assembly for reciprocal motion to reduce the trench depth displacement when either a gauge wheel or a press wheel travels over an obstacle.
Abstract:
A seed planting assembly is provided having a plurality of planting units supported by a tool bar, each of which being operable to form a seed trench in soil, plant seeds in the seed trench, and close the seed trench. The seed trench defines a depth that is achieved via a pair of gauge wheels. A press wheel assembly packs the trench after it has been seeded and closed. The planting assembly links the forward gauge wheels with the rear press wheel assembly for reciprocal motion to reduce the trench depth displacement when either a gauge wheel or a press wheel travels over an obstacle.