摘要:
Provided herein are a heat engine system and a method for managing a working fluid in the heat engine system during an emergency shutdown. The heat engine system utilizes a working fluid (e.g., sc-CO2) contained within a working fluid circuit to absorb and transport heat. An inventory system is coupled to the working fluid circuit and configured to receive and store at least a portion of the working fluid in the working fluid circuit during an emergency shutdown process. An attemperation line is coupled to the working fluid circuit upstream one or more heat exchangers and configured to direct a portion of the working fluid flow around at least one or more heat exchangers, thereby managing the temperature of the working fluid in the working fluid circuit.
摘要:
A heat engine system and a method for generating electrical energy from the heat engine system are provided. The method includes circulating via a turbo pump a working fluid within a working fluid circuit of the heat engine system. The method also includes transferring thermal energy from a heat source stream to the working fluid by at least a primary heat exchanger, feeding the working fluid into a power turbine and converting the thermal energy from the working fluid to mechanical energy, and converting the mechanical energy into electrical energy by a generator coupled to the power turbine. At least one valve operatively coupled to a control system is modulated in order to synchronize the generator with an electrical grid. A generator breaker is closed such that the generator and electrical grid are electrically coupled and the electrical energy is supplied to the electrical grid.
摘要:
Aspects of the invention generally provide a heat engine system and a method for activating a turbopump within the heat engine system during a start-up process. The heat engine system utilizes a working fluid circulated within a working fluid circuit for capturing thermal energy. In one exemplary aspect, a start-up process for a turbopump in the heat engine system is provided such that the turbopump achieves self-sustained operation in a supercritical Rankine cycle. Bypass and check valves of a start pump and the turbopump, a drive turbine throttle valve, and other valves, lines, or pumps within the working fluid circuit are controlled during the turbopump start-up process. A process control system may utilize advanced control techniques of the control sequence to provide a successful start-up process of the turbopump without over pressurizing the working fluid circuit or damaging the turbopump via low bearing pressure.