Abstract:
In some embodiments, an LCD device comprising (1) liquid crystals, (2) at least one lighting device that emits BSY-1, BSY-2, BSR, BSG-1, BSG-2 and/or BSG-3 light, (3) solid state light emitters (430-480 nm) and luminescent material (555-585 nm, 595-625 nm, or 510-560 nm), and/or (4) a light guide, a reflector and/or a light polarizer. In some embodiments, a light device comprising (1) at least one lighting device that emits BSY-1, BSY-2, BSR, BSG-1, BSG-2 and/or BSG-3 light, (2) a light guide, a reflector and/or a light polarizer, and/or (3) solid state light emitters (430-480 nm) and luminescent material (555-585 nm, 595-625 nm, or 510-560 nm).
Abstract:
Light engine modules comprise a support member and a solid state light emitter, in which (1) the emitter is mounted on the support member, (2) a region of the support member has a surface with a curved cross-section, (3) the emitter and a compensation circuit are mounted on the support member, (4) an electrical contact element extends to at least two surfaces of the support member, and/or (5) a substantial entirety of the module is located on one side of a plane and the emitter emits light into another side of the plane. Also, a module comprising means for supporting a light emitter and a light emitter. Also, a lighting device comprising a housing member and a light emitter mounted on a removable support member. Also, a lighting device comprising a module mounted in a lighting device element. Also, a method comprising mounting a module to a lighting device element.
Abstract:
A light engine housing comprising a mixing chamber element, a driver chamber element and/or a connection element, one or more of which is removable. A light engine comprising (1) a light engine housing and (2) a mixing chamber module and/or a driver module removably attached to and/or positioned in the light engine housing. Also, a light engine comprising (1) a light engine housing and a mixing chamber module and/or a driver module. Also, a solid state light engine comprising a light engine housing comprising at least a first connection element.
Abstract:
A lighting device, comprising first and second light emitters that emit light having first and second color points, respectively, and first and second sensors that detect brightness of light within 0.01 delta u′, v′ of the first and second color points, respectively. A method comprising supplying energy to first and second light, emitters that emit light having first and second color points, respectively, and detecting brightness of light within 0.01 delta u′, v′ of the first and second color points, respectively.
Abstract:
Solid state lighting devices include elongated heatsinks with multiple raised features each including a major surface non-parallel to a longitudinal direction of the heatsink. A device-scale heatsink including raised features may include at least a portion of a threaded rod or tube, with threads thereof forming the raised features. Raised features may also be formed by stamped and bent emitter support elements arranged to support solid state light emitters, with the emitter support elements inserted into recesses of an elongated heatsink body.
Abstract:
The present disclosure relates to an LED-based lighting component that can control the color rendering capability of its generated light based on the presence or characteristics of ambient light. In one embodiment, the lighting component may employ at least two different types of LEDs to generate light. Control circuitry of the lighting component is able to monitor ambient light and drive the LEDs based on an ambient light characteristic that is indicative of the CRI of the ambient light. If the ambient light characteristic is indicative of the ambient light having a lower CRI, the control system will drive the LEDs to emit light with a defined CRI. If the ambient light characteristic is indicative of the ambient light having a higher CRI, the control system will drive the LEDs to emit light with a reduced CRI, which is lower than the defined CRI.
Abstract:
A lighting device comprising a first group of solid state light emitters, with peak wavelength from 430 nm to 480 nm, and optionally a second group with dominant wavelength from 600 nm to 630 nm, and a first group of lumiphors which emit light having dominant wavelength from 555 nm to 585 nm. In some embodiments, if current is supplied to a power line, a combination of (1) light exiting the lighting device which was emitted by the first group of emitters, and (2) light exiting the lighting device which was emitted by the first group of lumiphors would, in an absence of any additional light, produce a sub-mixture of light having x, y color coordinates within an area on a 1931 CIE Chromaticity Diagram defined by points having coordinates (0.32, 0.40), (0.36, 0.48), (0.43, 0.45), (0.42, 0.42), (0.36, 0.38). Also provided is a method of lighting.
Abstract:
Solid state lighting devices include least one solid state emitter and multiple lumiphors, arranged to output aggregated emissions that include at least one short wavelength blue peak, at least one long wavelength blue (LWB) peak, at least one yellow and/or green peak, and at least one red and/or orange peak. Presence of long wavelength blue enhances color rendering. At least one solid state emitter may include a short wavelength blue LED, LWB LED, and/or UV LED. Multiple emitters may be provided. Resulting devices may provide CRI greater than 85, efficiency of greater than 50 lm/watt, and color stability in a range of Δu′v′≦0.008 over a temperature change of 75° C.
Abstract:
Solid state lighting (SSL) luminaires are disclosed having remote phosphors arranged to minimize heat degradation and to efficiently convert light. One embodiment of an SSL luminaire includes a light emitting diode (LED) mounted in a base. An enclosure is mounted in relation to the base so that light from the LED emits into the enclosure. A remote phosphor is mounted in the enclosure with at least some light from the LED passing into the remote phosphor where at least some of the light is absorbed and re-emitted at a different wavelength and passing through the enclosure. The remote phosphor is mounted a sufficient distance from the LED so substantially no heat from the LED passes into said conversion material, and wherein the remote phosphor has an open compound shape.