Abstract:
A method for predicting future states of a vehicle including the steps of selecting a model having n states reflecting dynamic features of the vehicle; inputting noisy sensor measurements representing a current state of the vehicle to generate (2n+1) sigma points Xi where i=0, . . . . 2n, each of the sigma points having n states; performing (2n+1) integrations, each integration includes propagating the n-states of the respective sigma points Xi through the non-linear function Yi=f(Xi); and combining the propagated sigma points to generate the predicted future states of the vehicle.
Abstract:
A method for predicting future states of a vehicle including the steps of selecting a model having n states reflecting dynamic features of the vehicle; inputting noisy sensor measurements representing a current state of the vehicle to generate (2n+1) sigma points Xi where i=0, . . . . 2n, each of the sigma points having n states; performing (2n+1) integrations, each integration includes propagating the n-states of the respective sigma points Xi through the non-linear function Yi=f(Xi); and combining the propagated sigma points to generate the predicted future states of the vehicle.