System and method for stochastically predicting the future states of a vehicle
    1.
    发明授权
    System and method for stochastically predicting the future states of a vehicle 有权
    随机预测车辆未来状态的系统和方法

    公开(公告)号:US08489317B2

    公开(公告)日:2013-07-16

    申请号:US12201884

    申请日:2008-08-29

    Abstract: A method for predicting future states of a vehicle including the steps of selecting a model having n states reflecting dynamic features of the vehicle; inputting noisy sensor measurements representing a current state of the vehicle to generate (2n+1) sigma points Xi where i=0, . . . . 2n, each of the sigma points having n states; performing (2n+1) integrations, each integration includes propagating the n-states of the respective sigma points Xi through the non-linear function Yi=f(Xi); and combining the propagated sigma points to generate the predicted future states of the vehicle.

    Abstract translation: 一种用于预测车辆的未来状态的方法,包括以下步骤:选择具有反映车辆的动态特征的n个状态的模型; 输入表示车辆的当前状态的噪声传感器测量值,以产生其中i = 0的(2n + 1)个Σ点Xi。 。 。 。 2n,每个Σ点具有n个状态; 执行(2n + 1)积分,每个积分包括通过非线性函数Yi = f(Xi)传播各个Σ点Xi的n态。 并组合传播的σ点以产生车辆的预测未来状态。

    SYSTEM AND METHOD FOR STOCHASTICALLY PREDICTING THE FUTURE STATES OF A VEHICLE
    2.
    发明申请
    SYSTEM AND METHOD FOR STOCHASTICALLY PREDICTING THE FUTURE STATES OF A VEHICLE 有权
    用于机动车预测车辆未来状态的系统和方法

    公开(公告)号:US20100057361A1

    公开(公告)日:2010-03-04

    申请号:US12201884

    申请日:2008-08-29

    Abstract: A method for predicting future states of a vehicle including the steps of selecting a model having n states reflecting dynamic features of the vehicle; inputting noisy sensor measurements representing a current state of the vehicle to generate (2n+1) sigma points Xi where i=0, . . . . 2n, each of the sigma points having n states; performing (2n+1) integrations, each integration includes propagating the n-states of the respective sigma points Xi through the non-linear function Yi=f(Xi); and combining the propagated sigma points to generate the predicted future states of the vehicle.

    Abstract translation: 一种用于预测车辆的未来状态的方法,包括以下步骤:选择具有反映车辆的动态特征的n个状态的模型; 输入表示车辆的当前状态的噪声传感器测量值,以产生其中i = 0的(2n + 1)个Σ点Xi。 。 。 。 2n,每个Σ点具有n个状态; 执行(2n + 1)积分,每个积分包括通过非线性函数Yi = f(Xi)传播各个Σ点Xi的n态。 并组合传播的σ点以产生车辆的预测未来状态。

Patent Agency Ranking