Abstract:
A vessel receives and agitates a fluid using an internal fluid-agitating element driven by an external motive device. In one aspect, the vessel is a bag including a first receiver for receiving and holding a fluid-agitating element at a home location. The first receiver may be in the form of an inwardly-projecting post having an oversized portion for capturing the fluid-agitating element, but various other forms are disclosed. Use of this feature in completely rigid vessels where the fluid-agitating element is free of direct attachment from a first receiver having an oversized portion is also disclosed. In another aspect, the vessel or bag further includes a second receiver for receiving a portion of an external structure, such as a motive device, and aligning the vessel relative thereto.
Abstract:
A mixing bag for use in bioprocessing in which a fluid is received and agitated using an internal fluid-agitating element driven by an external motive device is disclosed. The bag may include an integral sparger and sensor receiver. Related methods are also disclosed.
Abstract:
In a vessel, such as a flexible bag, a fluid is received and agitated using an internal fluid-agitating element driven by an external motive device and supported by a bearing, such as a roller bearing.
Abstract:
A system for pumping or mixing a fluid using a rotating pumping or mixing element and various other components for use in a pumping or mixing system are disclosed.
Abstract:
An apparatus detects a leak of an electrically conductive fluid from a disposable plastic bag used in mixing applications, such as during bioprocessing in a sterile environment. In one embodiment, the bag is associated with a sensor for detecting a leak from an interior compartment. The sensor may be arranged to detect either a leak internal to the at least two material layers of the bag or external to the outer layer, or both. Related methods are also disclosed.
Abstract:
A system is for determining a viscoelastic property of a flexible seal, such as for use in connection with a vessel having a junction formed between first and second rigid parts that serve to compress the seal in use. An oscillator including a magnetic material is coupled to the flexible seal, such as in a cantilevered manner with an integral part embedded in the flexible seal and projecting outwardly therefrom. A generator such as an electric coil is provided for generating a magnetic field for causing the magnetic material to output a signal representative of a dynamic mechanical response of the magnetic material. A sensor senses the signal. An analyzer may be provided for analyzing the signal to determine the viscoelastic property of the object. Flexible seals with one or more embedded permanent magnets are disclosed, as are related methods.
Abstract:
An apparatus for integrity testing a first container having a flexible body at least partially defining a first interior chamber using a second container having a second, preferably sterilized interior chamber at least partially filled with a detectable gas. A sensor associated with a detection chamber for receiving the flexible container, and possibly the second container as well, senses the presence of the detectable gas external to the first interior chamber in the event of a leak of the detectable gas therefrom. Related methods also involve integrity testing of fluid processing bags and other types of flexible containers.
Abstract:
A system for pumping or mixing a fluid using a rotating pumping or mixing element and various other components for use in a pumping or mixing system are disclosed.
Abstract:
A mixing bag for use in bioprocessing in which a fluid is received and agitated using an internal fluid-agitating element driven by an external motive device is disclosed. The bag may include an integral sparger and sensor receiver. Related methods are also disclosed.
Abstract:
A system capable of pumping or mixing relatively warm fluids using a rotating magnetic element or bearing levitated by a cold superconducting element is disclosed. The magnetic element or bearing carries at least one impeller and is placed in a fluid vessel positioned external to the outer wall of a cryostat or other housing for the superconducting element. A separate cooling source thermally linked to the superconducting element provides the necessary cooling to create the desired superconductive effects and induce levitation in the magnetic element or bearing. The outer wall or housing defines a chamber around the cold superconducting element that thermally isolates it from the vessel. To ensure that the desired level of thermal isolation is provided, this chamber is evacuated or filled with an insulating material. This thermal isolation allows for placement of the superconducting element in close proximity to the wall or housing adjacent to the vessel to achieve a significant reduction in the separation distance from the magnetic element or bearing. This enhances the magnetic stiffness and loading capacity of the levitating element or bearing. However, since the superconducting element is thermally isolated from the outer wall or housing, the vessel, and hence the magnetic element/bearing and fluid contained therein, are not exposed to the cold temperatures required to produce the desired superconductive effects and the resultant levitation. By using means external to the vessel to rotate and/or stabilize the magnetic element/bearing levitating in the fluid, the desired pumping or mixing action is provided.