Abstract:
An optical system comprises, in order from the object side, an aperture stop, a first lens with positive refracting power, a second lens with negative refracting power, and a third lens, both surfaces of the third lens are an aspherical surface in which refracting power varies in accordance with distance from the optical axis in such a way that the both surfaces have a convex shape facing toward the object side in the vicinity of the optical axis and have a concave shape facing toward the object side in the vicinity of the outer circumference, and the following conditions (1) and (2) are satisfied: 2.2
Abstract:
A wide-angle optical system comprises, in order from its object side, a stop, a first lens (L1) having positive refracting power, a second lens (L2) having negative refracting power and a third lens (L3) that is an aspheric lens. The third lens is configured such that as viewed in a lens section including an optical axis, a portion thereof near the optical axis is in a meniscus shape convex on an object side thereof, and an object side surface and an image side surface thereof at a peripheral site are in a meniscus shape convex on an image side thereof. The optical system satisfies the following conditions (1-1) and (1-2). −0.40
Abstract:
An optical system comprises, in order from the object side, an aperture stop, a first lens with positive refracting power, a second lens with negative refracting power, and a third lens, both surfaces of the third lens are an aspherical surface in which refracting power varies in accordance with distance from the optical axis in such a way that the both surfaces have a convex shape facing toward the object side in the vicinity of the optical axis and have a concave shape facing toward the object side in the vicinity of the outer circumference, and the following conditions (1) and (2) are satisfied: 2.2
Abstract:
A wide angle optical system is formed by, in order from the object side, an aperture stop, a first lens with positive refracting power, a second lens with negative refracting power, and a third lens. Both surfaces of the third lens are an aspherical surface in which refracting power varies in accordance with distance from the optical axis in such a way that the both surfaces have a convex shape facing toward the object side in the vicinity of the optical axis and have a concave shape facing toward the object side in the vicinity of the outer circumference, and the following conditions (1) and (2) are satisfied: 0.1
Abstract:
An optical system comprises, in order from the object side, an aperture stop, a first lens with positive refracting power, a second lens with negative refracting power, and a third lens, both surfaces of the third lens are an aspherical surface in which refracting power varies in accordance with distance from the optical axis in such a way that the both surfaces have a convex shape facing toward the object side in the vicinity of the optical axis and have a concave shape facing toward the object side in the vicinity of the outer circumference, and the following conditions (1) and (2) are satisfied: 2.2
Abstract:
A wide-angle optical system comprises, in order from its object side, a stop, a first lens (L1) having positive refracting power, a second lens (L2) having negative refracting power and a third lens (L3) that is an aspheric lens. The third lens is configured such that as viewed in a lens section including an optical axis, a portion thereof near the optical axis is in a meniscus shape convex on an object side thereof, and an object side surface and an image side surface thereof at a peripheral site are in a meniscus shape convex on an image side thereof. The optical system satisfies the following conditions (1-1) and (1-2). −0.40
Abstract:
A wide angle optical system is formed by, in order from the object side, an aperture stop, a first lens with positive refracting power, a second lens with negative refracting power, and a third lens. Both surfaces of the third lens are an aspherical surface in which refracting power varies in accordance with distance from the optical axis in such a way that the both surfaces have a convex shape facing toward the object side in the vicinity of the optical axis and have a concave shape facing toward the object side in the vicinity of the outer circumference, and the following conditions (1) and (2) are satisfied: 0.1