Abstract:
A method and system for calculating daily weighted averages of glucose measurements (or derived quantities) with time-based weights are disclosed. The present invention computes an average daily glucose value using the time based weights based on only consecutive glucose measurements in the plurality of glucose measurements with acceptable time intervals that do not exceed a predefined maximum time interval. The invention further relates to a computer program for implementing the method for calculating daily weighted averages of spot monitoring glucose measurements (or derived quantities) with the time-based weights.
Abstract:
A method and system for calculating daily weighted averages of glucose measurements (or derived quantities) with time-based weights are disclosed. The present invention computes an average daily glucose value using the time based weights based on only consecutive glucose measurements in the plurality of glucose measurements with acceptable time intervals that do not exceed a predefined maximum time interval. The invention further relates to a computer program for implementing the method for calculating daily weighted averages of spot monitoring glucose measurements (or derived quantities) with the time-based weights.
Abstract:
A system for developing patient-specific therapies based on dynamic modeling of patient-specific physiology and method thereof are disclosed. The system includes software modules configured to provide access via a computer to one or more data collection protocols defining at least a type of patient-specific data to be collected and a manner in which the patient-specific data is to be collected, and to information from which one or more patient-specific models, configured to simulate one or more aspects of the patient's physiology, is developed. Another software module of the system is configured to provide access via the computer to one or more software tools that apply patient-specific data, collected according to the one or more data collection protocols, to the one or more patient specific models to determine therefrom one or more patient-specific therapies.
Abstract:
A system providing for user intervention in a medical control arrangement may comprise a first user intervention mechanism responsive to user selection thereof to produce a first user intervention signal, a second user intervention mechanism responsive to user selection thereof to produce a second user intervention signal, and a processor executing a drug delivery algorithm forming part of the medical control arrangement. The processor may be responsive to the first user intervention signal to include an intervention therapy value in the execution of the drug delivery algorithm, and responsive to the second user intervention signal to exclude the intervention therapy value from the execution of the drug delivery algorithm. The medical control arrangement may be a diabetes control arrangement, the drug delivery algorithm may be an insulin delivery algorithm, and the intervention therapy value may be, for example, an intervention insulin quantity or an intervention carbohydrate quantity.
Abstract:
A system is provided that enables glycemic control for a subject. The system includes an insulin delivery unit, a glucose sensor, and a control unit. The control unit includes a processor unit that receives glucose value readings from the glucose sensor, executes an algorithm that predicts a glucose value at a predetermined time in the future, compares that predicted glucose value to a pre-determined glucose value range, and determines a corrective amount of insulin to be administered when the predictive glucose value lies outside of the predetermined glucose value range. The control unit also includes a communication unit that transmits the corrective amount to the delivery unit.
Abstract:
A method and system for calculating daily weighted averages of glucose measurements (or derived quantities) with time-based weights are disclosed. The present invention computes an average daily glucose value using the time based weights based on only consecutive glucose measurements in the plurality of glucose measurements with acceptable time intervals that do not exceed a predefined maximum time interval. The invention further relates to a computer program for implementing the method for calculating daily weighted averages of spot monitoring glucose measurements (or derived quantities) with the time-based weights.
Abstract:
A system for developing patient-specific therapies based on dynamic modeling of patient-specific physiology and method thereof are disclosed. The system includes software modules configured to provide access via a computer to one or more data collection protocols defining at least a type of patient-specific data to be collected and a manner in which the patient-specific data is to be collected, and to information from which one or more patient-specific models, configured to simulate one or more aspects of the patient's physiology, is developed. Another software module of the system is configured to provide access via the computer to one or more software tools that apply patient-specific data, collected according to the one or more data collection protocols, to the one or more patient specific models to determine therefrom one or more patient-specific therapies.
Abstract:
A diagnosis, therapy and prognosis system (DTPS) and method thereof to help either the healthcare provider or the patient in diagnosing, treating and interpreting data are disclosed. The apparatus provides data collection based on protocols, and mechanism for testing data integrity and accuracy. The data is then driven through an analysis engine to characterize in a quantitative sense the metabolic state of the patient's body. The characterization is then used in diagnosing the patient, determining therapy, evaluating algorithm strategies and offering prognosis of potential use case scenarios.
Abstract:
A therapy delivery system having an open architecture and method of providing thereof are disclosed. The present invention provides a therapy dosage module having a control algorithm that can be replaced with a predefined or independently defined control algorithm. The tools necessary to create and test such control algorithms in the therapy dosage module in a simulated environment before implementing it in a live therapy system are also disclosed.
Abstract:
A therapy delivery system having an open architecture and method of providing thereof are disclosed. The present invention provides a therapy dosage module having a control algorithm that can be replaced with a predefined or independently defined control algorithm. The tools necessary to create and test such control algorithms in the therapy dosage module in a simulated environment before implementing it in a live therapy system are also disclosed.