摘要:
A method for controlling a longwall mining operation, including a face conveyor, at least one extraction machine, and a hydraulic shield support, in underground coal mining. Using inclination sensors disposed on at least three of the four main components of each shield support frame, such as floor skid, gob shield, support connection rods, and gob-side region of the top canopy, the inclination of the shield components relative to horizontal is ascertained in the direction of step. In a computer, the ascertained inclination data is compared with base data stored in the computer that defines the geometrical orientation of the components and their movement during stepping. From the comparison, a respective height of the shield support frame, at the forward end of the top canopy, is calculated as a measure for the face opening.
摘要:
A face equipment for mechanical extraction in longwall mining, in particular in the underground hard coal mining industry, includes a face conveyor (17) arranged along the mining wall, an extraction device (18) that can be moved along the face conveyor (17), and shield support frames (10) supported on the face conveyor (17) at an angle thereto. In order to determine the height of the face opening, a flexible hose level (21) with a liquid-filled hose (22) placed between the face conveyor (17) and at least one main component of the shield support frame (10) is installed in the area of the face conveyor (17). A pressure sensor (23, 24, 28) is arranged on at least one end of the hose (22). An inclination measuring device (25, 26) is arranged on the face conveyor (17) and on the main component of the shield support frame (10).
摘要:
A method for controlling a longwall mining operation, including a face conveyor, at least one extraction machine, and a hydraulic shield support, in underground coal mining. Using inclination sensors disposed on at least three of the four main components of each shield support frame, such as floor skid, gob shield, support connection rods, and gob-side region of the top canopy, the inclination of the shield components relative to horizontal is ascertained in the direction of step. In a computer, the ascertained inclination data is compared with base data stored in the computer that defines the geometrical orientation of the components and their movement during stepping. From the comparison, a respective height of the shield support frame, at the forward end of the top canopy, is calculated as a measure for the face opening.
摘要:
A method for maintaining, in a controlled manner, a top canopy/coal-face distance expedient for rock mechanics, in longwall mining operations in underground coal mining, using a face conveyor, at least one extraction machine, and a hydraulic shield support frame. Inclination sensors are disposed on at least three of the four main components of the shield support frame, including floor skid, gob shield, support connection rods and gob-side area of the top canopy. An inclination of the top canopy and floor skid are ascertained via the sensors. From the ascertained inclination data, in a computer, the effects on a top canopy/coal face distance are determined when changes in an angle of inclination of the top canopy occur. An automatic adjustment of decisive cycle parameters of the shield support frame are carried out, wherein the work cycle comprises retraction, advancement and setting processes.
摘要:
A face equipment for mechanical extraction in longwall mining, in particular in the underground hard coal mining industry, includes a face conveyor (21) arranged along the coal face, an extraction mechanism (22) that can be moved along the face conveyor (21), and shield support frames (10) fastened at an angle to the face conveyor (21). In order determine the shield height of the extended shield support frame (10) corresponding to the face opening height, a flexible hose level (17) with a liquid-filled hose (18) is installed between the roof canopy (13) and floor skid (11) of individual shield support frames (10), and a pressure sensor (19) is arranged on the skid-side end of the hose (18). An inclination measuring device (25) is arranged on the roof canopy (13), and the pressure sensor (19) and inclination measuring device (25) are connected to an analyzing and control unit.
摘要:
A method for automatically producing a defined face opening in a longwall mining operation in underground coal mining, using a face conveyor, at least one plow, as an extraction machine, guided on the face conveyor, and respective hydraulic shield support frames having, as main components, a floor skid arrangement, a gob shield, a top canopy and support connection rods. Inclination sensors are disposed on at least three of the floor skid arrangements, the gob shield, the support connection rods and a gob-side region of the top canopy. From the sensors, an inclination relative to a horizontal is ascertained. From the inclination data, by comparison with base data defining a geometrical orientation of the components and movement thereof during a stepping process, a respective shield height of the shield support frames perpendicular to a bed thereof is calculated and is compared with a machine-dependent fixed cutting height of the plow to establish if deviations exist. By means of a boom controller disposed between the shield support frame and the face conveyor, a height control of the plow is initiated to correct established deviations and is maintained, in the sense of a location-synchronized evaluation, until the shield support frame, which trails the plow with a time delay, has reached the position at which the plow was located at the point in time when the height control of the plow was initiated.
摘要:
A method for controlling the extraction capacity of longwall operations in underground coal mining, including ascertaining the respective demand of the longwall operations, for air-technology and climate-technology resources, as influencing variables for a projected delivery quantity on the basis of data applicable to equipment of the longwall operations and to mineral deposit parameters, and storing the ascertained influencing variables in a computer as target data. Actual data for a raw coal delivery quantity, for air flowing through, for the supplied cooling capacity, and for the exhaust gas during running operation is detected and conveyed to the computer. if an increased demand for resources is recognized, coverage is initiated via a changeover of excess resources available at other longwall operations or if a reduced demand for resources is recognized, excess resources are rerouted to other longwall operations experiencing corresponding demand deficiencies.
摘要:
A method for automatically producing a defined face opening in a longwall mining operation, in underground coal mining, having a face conveyor, at least one extraction machine and hydraulic shield support frames. Inclination sensors are disposed on at least three of the four main components of each shield support frame, such as floor skid, gob shield, support connection rods and gob-side area of the top canopy. From ascertained inclination data, by comparison with base data defining a geometrical orientation of the components and a movement thereof during stepping, a respective shield height of the shield support frames perpendicular to a bed thereof is calculated. From further sensors on the extraction machine, a cutting height thereof is acquired as a face opening. In terms of a location-synchronous analysis, for possible adjustment purposes the cutting height is compared with the shield height when the shield support frame, which trails the extraction machine with a time delay, has reached the position to which relates that cutting height which was used in the comparison.
摘要:
A face equipment for mechanical extraction in longwall mining, in particular in the underground hard coal mining industry, includes a face conveyor (17) arranged along the mining wall, an extraction device (18) that can be moved along the face conveyor (17), and shield support frames (10) supported on the face conveyor (17) at an angle thereto. In order to determine the height of the face opening, a flexible hose level (21) with a liquid-filled hose (22) placed between the face conveyor (17) and at least one main component of the shield support frame (10) is installed in the area of the face conveyor (17). A pressure sensor (23, 24, 28) is arranged on at least one end of the hose (22). An inclination measuring device (25, 26) is arranged on the face conveyor (17) and on the main component of the shield support frame (10).
摘要:
The invention relates to a method and a device for cleaning the door of a coke oven, said door comprising a sealing edge and a membrane that is attached to the door panel of the coke oven. According to said method, cleaning tools comprising jet nozzles, which are supplied with a flow medium at high pressure, are situated and displaced back and forth in the region between the sealing edge and the door panel of the coke oven, in such a way that the interior surface of the membrane and the sealing edge are cleaned. The coke oven door is cleaned directly after the coke oven chamber is opened, by at least one jet nozzle element, which is supplied with compressed air and is displaced along the sealing edges. The jet nozzles are oriented in such a way that the air hits the surface to be cleaned at an acute angle.