Abstract:
Electrical connecting lines of a sensor element are anchored by friction locking, specifically using an annularly closed spring element which clamps the connecting lines against contact surfaces on the sensor element using pressure bodies.
Abstract:
The present invention provides a sensor capable of maintaining an electrical connection between the lead frame and an electrode terminal section of the detection element even when an inadequate external force is applied to a lead frame and a sensor production method capable of preventing the lead frame from buckling and being deformed into an inadequate shape. The lead frame (second lead frame) can inhibit movement of a second frame main body section axially toward a rear end side through engagement of a third locking surface of a second locking section with a second locking groove and can inhibit the second frame main body section from going apart from an inner surface of an insertion hole through engagement of a fourth locking surface of the second frame locking section, which faces an element engagement section side. Namely, even when an external force is applied to the lead frame, movement of the lead frame main body section (second lead frame main body section) can be inhibited and a variation in the relative positions of the lead frame and the detection element can be prevented.
Abstract:
A total NOx sensor with minimal interferences from CO and O2 includes a yttria-stabilized zirconia (YSZ) pellet and a Pt-loaded zeolite Y layer. Furthermore, three platinum wires are attached to the YSZ surface which operate as the working, counter and reference electrode. A potentiostat is connected to the electrodes to maintain a fixed potential between the reference and working electrode. The potentiostat then monitors the relationship between time and current through the counter electrode.
Abstract:
A gas sensor equipped with a protective gas cover which defines therein a gas chamber to which a sensor element is exposed. The protective gas cover has gas inlet holes through which gas to be measured is admitted. The protective cover also has dimples formed adjacent the gas inlet holes, respectively, which are designed to avoid a direct hit of a flow of the gas on the sensor element and minimize the concentration of thermal stress around the gas inlet holes. In an alternative form, the gas inlet holes are formed in the dimples, respectively.
Abstract:
A gas sensor comprising: a gas sensor element extending in an axial direction; a cylindrical metal shell enclosing said gas sensor element such that a leading end portion of said gas sensor element protrudes from its own leading end; and a protector fixed on said metal shell and covering said leading end portion of said gas sensor element, wherein said protector includes: a cylindrical outer cover portion fixed on said metal shell and having gas introducing apertures; and a cylindrical inner cover portion arranged on an inner side of said outer cover portion and having elastic portions being capable of being elastically deformed by a pushing force acting in an axial direction, and said inner cover portion is so clamped between said metal shell and said outer cover portion that said elastic portions are elastically deformed by said axial pushing force.
Abstract:
It is an object of the invention to provide a sensor which is highly reliable, and a method or producing a sensor which is highly reliable, and which can be easily produced. A method of producing a sensor in which bending of a heater and the like hardly occur is provided.In the invention, an oxygen sensor (1) has: an oxygen sensor element (2); a metal shell (3); first and second sensor terminal metal parts (11), (12); a heater (15); heater terminal metal parts (16), (17); a metal outer tube (21); and a separator (31) which is housed inside the metal outer tube (21), in which the terminal metal part (11) and the like and the heater (15) are held, and which provides insulation between the terminal metal part (11) and the like. An outer-tube butting face (34a) is formed in a flange portion (34) of the separator (31). In the metal outer tube (21), a flange butting face (24b) which butts against the outer-tube butting face (34a) is formed. Both of the outer-tube butting face (34a) and the flange butting face (24b) form an inclined face which is more radially outward positioned as further advancing toward the tip end. The separator (31) is pressed toward the rear end. The pressing is conducted by deforming the metal outer tube (21), and deforming a pressing metal part (41) which is placed around a tip end side portion (33) of the separator (31).
Abstract:
A gas sensor including: a cylindrical metal shell; a detection element having a detection portion provided on a front end side thereof; the detection element being fixed inside the metal shell while the detection portion of the detection element protrudes from a front end side of the metal shell; and an element protection cap having ventholes, the element protection cap being fixed to the metal shell so that the detection portion of the detection element is covered with the element protection cap. A crimping cylindrical portion is provided which extends to a front end side of the metal shell. A protrusion portion of the element protection cap which abuts a metal ring packing is provided with concave and convex portions outward along an outer circumferential direction. As such, the metal ring packing is deformed so as to be interlocked with the concave and convex portions when the crimping cylindrical portion is compressively deformed.
Abstract:
An air-fuel ratio sensor includes a sensor element inserted through a cylindrical housing for detecting an air-fuel ratio in an atmosphere of unburnt gas, and a measured gas side cover disposed on an end of the cylindrical housing so as to cover the sensor element and defining an inside chamber for storing therein a gas to be measured. The cover has a nested structure composed of a plurality of cup-shaped cover members disposed one inside another, each cover member having a gas inlet hole formed in a side wall thereof and a bottom hole formed in a bottom wall thereof. The gas inlet hole of an innermost one of the plural cover members that directly faces the sensor element is offset from an air-fuel ratio detecting portion of the sensor element toward the housing in an axial direction of the sensor.
Abstract:
The invention relates to an oxygen-concentration detecting element including (a) a base member constructed of a first insulating material; (b) an electric heater layer formed on the base member to generate a heat when electrically energized; (c) an oxygen-detecting laminated unit formed on the base member, the unit including a solid electrolyte layer activated by the heat; (d) a printed protecting layer covering the base member, the electric heater layer and the oxygen-detecting laminated unit, being constructed of a mixture of a second insulating material and a solid electrolyte material, and having a porous structure provided with voids derived from a void forming agent contained in an amount of 10-80 volume %, based on a total volume of the second insulating material and the void forming agent, prior to a baking for producing the oxygen concentration detecting element; and (e) a porous protecting layer covering the printed protecting layer.
Abstract:
An improved structure of a gas sensor is provided which is designed to establish a desired degree of gas/liquid tight sealing between a sensor element and a housing. The gas sensor includes a powder seal fitted in a chamber defined between the sensor element and the housing. The dimensions of the powder seal and the chamber are selected to enhance gas/liquid tight properties of the powder seal.