Abstract:
A hydrostatic axial piston machine includes a drive shaft and a plurality of cylinder sleeves in which a spherical or ball-shaped section and a spherical or ball-shaped piston are inserted to delimit a respective displacer chamber. The sections are secured on a rotor, while the pistons are secured on a piston disk or piston drum. The piston disk is configured to be tilted at different pivoting angles relative to the rotor in a variable-displacement machine, or the piston disk is tilted continuously relative to the rotor in a constant-displacement machine. The rotor and the piston disk are coupled to one another for conjoint rotation by a driving device. The rotor and the piston disk can also be coupled indirectly by a drive shaft of the machine. A sliding joint axial with respect to a drive shaft is arranged between the rotor and the piston disk.
Abstract:
The aim of the invention is to improve the efficiency of an axial-piston motor comprising at least one compressor cylinder, at least one working cylinder and at least one pressure line guiding the compressed fuel from the compressor cylinder to the working cylinder. To this end, the axial-piston motor is provided with at least one compressor cylinder inlet valve having an annular cover.
Abstract:
What is disclosed is an axial-piston machine having at least one swash plate and one cylinder drum supported thereon, which includes a multiplicity of cylinder sleeves. To the cylinder sleeves a row of pistons is associated which is connected with a shaft. In accordance with the invention, the cylinder sleeves are articulatedly mounted in the cylinder drum.
Abstract:
A hydraulic machine-has a rotating group located within a housing and a port plate to control flow from the barrel of the rotating group to inlet and outlet ports. The port plate is sealed against one of the housing or barrel and sleeves extend between the other of the housing or barrel to accommodate misalignment between the barrel and housing as the barrel rotates.