Abstract:
The present invention provides an escalator braking system and an escalator braking control method, belonging to the field of escalator braking control technology. In the escalator braking system and the escalator braking control method according to the present invention, a braking mode is determined based on the classification of failure information in combination with the corresponding image information, and a braking device is controlled based on the braking mode, so that the braking is more intelligent, scientific and accurate, the occurrence of security problems caused by the failure can be effectively prevented, and the probability of accident is reduced.
Abstract:
A structural health monitoring system is provided. The system includes a drive system having a first drive member a second drive member 38 operationally connected to the first drive member, and a tension member 39 operationally connecting the first drive member to the second drive member. At least one sensor 50 is configured to monitor a characteristic of at least one of the first drive member and the second drive member. A processor 54, in communication with the at least one sensor, is configured to determine if the structural health of the tension member is compromised based on the monitored characteristic. The processor is further configured to perform a safety response action when the structural health of the tension member is determined to be compromised.
Abstract:
A safety system for use in a drive system includes first and second safety sensors that provide respective first and second sensor signals indicative of a safety condition of the drive system. The safety system includes a safety device that processes the first and second sensor signals to determine a safety state of the drive system, and that controls a unit of the drive system based on the safety state. The safety device includes a multi-core processor having first and second processing cores. In some embodiments, the first and second processing cores receive and process the respective first and second sensor signals in parallel to determine the safety state. In other embodiments, each of the first and second processing cores receive both the first and second sensor signals, and each of the first and second processing cores process both the first and second sensor signals to determine the safety state.
Abstract:
Guide rail for an escalator of a moving walkway, comprising at least one planar base surface with a guide surface for rollers, particularly for guide rollers of a step belt or plate belt of an escalator or a moving walkway, and at least one guide strip with a guide flank for lateral guidance of these rollers, wherein the guide strip is a separate component.
Abstract:
Power is recovered from an escalator or a moving walkway as the step orbits an endless track on rollers. A generator is connected to a roller orbiting the track. A battery backup is provided. The power is used for emergency lighting on the step, and for data transmission. Advertising and messages are displayed on a dynamic video screen mounted on the step. The apparatus is mostly contained within the escalator step. Information is communicated wirelessly to a remotely located central control station and back to the step, so as to display information in real time and to update advertising while the escalator is in operation. The central control station also monitors performance parameters. The visual display can include LED lighting.
Abstract:
A device and method for automatically adjusting safety control parameters of a conveyor are disclosed. The safety device may include various sensors and a safety control module. The safety control module may be preprogrammed with a learn-run method configured to learn operational and mechanical characteristics of a conveyor, validate the operational characteristics of the conveyor based on predefined nominal specifications, and determine a safety function with calibrated safety control parameters by which to monitor conveyor operation.
Abstract:
A device and method for detecting a misaligned or missing step of a conveyor are disclosed. The missing step detector includes various sensors for detecting the drive speed of the conveyor and for detecting the presence of pallets or steps. The sensor output signals are correlated to determine fixed values characteristic of the specific conveyor in question. Using the fixed values as reference, the missing step detector is able to effectively monitor the conveyor for misaligned or missing steps independent of conveyor speed and time.
Abstract:
A system for detecting a person relative to a passenger conveyor includes a driving circuit for supplying an oscillating drive signal to a first electrode of a capacitive sensor configured to produce an electric field toward a second electrode in response to the oscillating drive signal. A detection circuit is connected to the capacitive sensor, and produces an output as a function of the capacitance of the capacitive sensor, such that the detection circuit senses a change in capacitance of the capacitive sensor, such as when a person enters the electric field between the first and second electrodes. A controller is responsive to the change in capacitance sensed by the detection circuit to selectively adjust an operation mode of the passenger conveyor.
Abstract:
A display device (40) for use with a passenger conveyor (20) provides a traffic flow direction indicator and visible maintenance information. One example includes a display panel (42) supported on a surface (38) that is conveniently positioned between a handrail (28) and a landing (24). In one example, a single display panel (42) alternatively provides the traffic flow direction indicator or the maintenance information. In another example a first display panel (42) and a second display panel (48) are supported on a plate (43) that is selectively moveable into different positions, depending on which display panel should be visible. One example includes a remote signaling device (62) that allows an individual to control the information shown on the display device (40).
Abstract:
Escalator operation sounds are collected by a remote sound-collecting device 15 or fixed sound-collecting devices 17 and 18, and stored in a data collecting device 21 of a diagnosis device 20. A processing device 22 extracts only abnormal sound components of the escalator operation sound by calculation of a difference between reference data and the sound data stored in the data collecting device 21. The processing device 22 determines an occurrence of an anomaly based on whether a maximum peak P of the abnormal sound components is higher than a predetermined threshold value Sh1. When determined that the anomaly has occurred, the processing device 22 investigates a correlation between a frequency analysis result on data around the maximum peak of the abnormal sound components and abnormal sound frequency patterns pre-stored by causes of anomalies, and estimates the cause of the anomaly based on the investigation.