Abstract:
The subject matter of the invention is a method for purifying a foreign-substance-laden gas flow of the foreign substance, with the gas flow being conducted through a heat exchanger and being placed in thermal contact with a cooling medium in order to freeze and/or condense the foreign substance out, wherein the purification takes place in only one tube heat exchanger, through the interior space of which the gas flow is conducted from a first end region to a second end region, and here, is cooled by means of contact with a first group of tubes which are traversed by the coolant, and in that the gas flow, in the second end region, is directly deflected again and is conducted back through the interior space of the heat exchanger to the first end region through a second group of tubes while undergoing an exchange of heat with the gas flow flowing into the interior space. A corresponding device has a heat exchanger having at least two groups of tubes which run through an interior space of the heat exchanger from a first end region to a second end region of the heat exchanger, with it being possible for the gas flow to traverse the interior space of the heat exchanger from a gas flow inlet at the first end region to the second end region, and with a first group of the tubes being part of a substantially closed cooling medium circuit, and a second group of the tubes for recirculating the gas flow from the second end region of the heat exchanger being connected to a purified gas outlet in the first end region. In order to further reduce the operating temperature in the second end region, it is possible for additional cooling medium to be injected into the cooling medium circuit upstream of said second end region. It is even possible for the injection to take place by means of an injector, which then replaces a pump and cooler.
Abstract:
A method and apparatus for the accumulation of hyperpolarized 129Xe is described. A gas mixture comprising 129Xe is flowed through a heat exchanger tube from the first end to the second end. Concurrently, the outer surface of the heat exchanger tube is controllably refrigerated, beginning with the second end, to a temperature low enough to freeze the 129Xe on the inner surface of the heat exchanger tube.
Abstract:
A sublimator device is designed where the distance between the sublimation surface and the bottom of the device to be adjusted depending on the amount of substance in the bottom of the device and the rate of sublimation without stopping the process. The device has a threaded connector on the top that allows the condenser to be advanced or receded without stopping the sublimation process. Different embodiments of the sublimator device are disclosed and indications for the use of these devices during the sublimation process are discussed.
Abstract:
An apparatus for subliming or condensing a water-containing fluid, which apparatus is provided with a tubular holder (1) having a longitudinal direction and at east one tube (2) extending in that longitudinal direction at least within the holder (1), wherein the holder is provided with at least one inlet (5) and at least one outlet (6), there being further provided at least one supply (3) and at least one discharge (4), which are in communication with the interior of the at least one tube (2), which on one side extends through a wall of the holder an is sealingly secured therein an don the other side within the holder terminates with a free end, closed with respect to the interior of the holder, which free end is guided so as to be slidable in longitudinal direction, by guide means which are located at a distance from the wall in which the tube is scalingly secured.
Abstract:
An apparatus for subliming or condensing a water-containing fluid, which apparatus is provided with a tubular holder (1) having a longitudinal direction and at east one tube (2) extending in that longitudinal direction at least within the holder (1), wherein the holder is provided with at least one inlet (5) and at least one outlet (6), there being further provided at least one supply (3) and at least one discharge (4), which are in communication with the interior of the at least one tube (2), which on one side extends through a wall of the holder an is sealingly secured therein an don the other side within the holder terminates with a free end, closed with respect to the interior of the holder, which free end is guided so as to be slidable in longitudinal direction, by guide means which are located at a distance from the wall in which the tube is scalingly secured.
Abstract:
A method and condenser apparatus for cleaning a gas of condensable vapor employing a cryogenic liquid which is caused to boil evenly along the condenser length and wherein the gas flow through the condenser is in the downward direction in evenly divided flows countercurrently to the flow of boiled cryogen.
Abstract:
A freeze-thaw air dryer utilizes a heat pump to remove moisture from air by cooling the air to below the freezing point of water, causing the water to pass directly from the vapor state to the solid state and thereby to be removed from the flow of air. The vapor frozen on the cold surfaces is periodically thawed by either turning off or reversing the heat pump, and the condensate and thawed ice are automatically drained out of the device without interruption of the airflow. The geometry of the cold surfaces and the generally centripetal airflow path are designed expressly to cause a buildup of ice without impairing efficiency or blocking the airflow.
Abstract:
For the non-clogging, fractional desublimation of vapor-phase solids contained in a gas-vapor mixture, the gas-vapor mixture, exiting at high velocity from a nozzle, is mixed with a cooling gas, likewise exiting at high velocity from another nozzle. The gas-vapor mixture and the cooling gas flow toward each other, the axes of the two gaseous streams being a straight line. Fractional desublimation of the solids is attained by adjustment of flows leading to the regulation of the temperature and residence time of the cooled gas-vapor mixture. This desublimation system is capable of degrees of efficiency and solids purities higher than 99%.
Abstract:
The Vacuum Freezing Vapor Desublimation Desublimate Vaporization Process (denoted as VDDV Process) is an improved vacuum freezing process that is useful in separating solvent from a solution that contains one or more non-volatile solutes. It can be used in desalination of sea water and brackish water, renovation of waste water, and concentration of aqueous and non-aqueous solutions.Referring to sea water desalination, the process comprises the following steps: (a) feed sea water is flash vaporized under a reduced pressure to thereby form a first low pressure water vapor (3.5 torr) and an ice-brine slush; (b) the first low pressure water vapor is cooled without pressurization to form a mass of desublimate; (c) the ice-brine slush is separated into a mass of purified ice and a concentrated brine; (d) the desublimate is melted and vaporized to form a second low pressure water vapor that is at a pressure higher than the triple point pressure of water (4.58 torr); (d) the second low pressure water vapor is brought in contact with the purified ice to thereby condense the vapor and melt the ice. Both the condensate and the melt become product fresh water. The characteristic feature of the process is that a low pressure vapor is pressurized from a first pressure that is lower than the triple point pressure to a second pressure that is higher than the triple point pressure by first desubliming the vapor and then melting and vaporizing the desublimate. The need of a low pressure compressor has been eliminated.
Abstract:
Sublimate vapors are recovered from gases in a heat-pipe exchanger system, operating alternately in a condensing mode and a melting mode, for condensing on the exchanger tube surfaces such sublimable vapors as phthalic anhydride, maleic anhydride, naphthalene and fatty acids from gases containing said vapors thereof during the condensing mode, and for melting out the accumulated sublimate solids during the melting mode. Multiple, such as two or more units may be used to provide continuous processing of the sublimate vapor-laden gas stream, at least one operating in the condensing mode while simultaneously at least one may operate in the alternate mode. The cooling of opposite heat-pipe exchanger ends to recover sublimate solids is economical and efficient with ambient air, either alone or with some warm recycle exchanger air to adjust the cooling temperature; and the heating to melt out the accumulated solids is effective with heated air or hot waste gases, such as combustion gases, preferably by incineration of residual sublimate tail gas from which the sublimate was condensed, or other hot combustion gases, but other sources of heating the air or gases may be optionally substituted. Important advantage is present in superior heat exchange efficiency using the heat-pipe exchanger for this service, in the ease of switching from heating to cooling of such exchangers for alternate operation in both condensing and melting modes, in the elimination of intermediary heat transfer media and the separate auxiliary equipment required for the heating and cooling cycles, in the utilization of waste heat from combustion gases, and in the great economy for sublimate storage tank vent condensers through elimination of both cooling water and steam requirements.