Abstract:
An autonegotiation circuit for gigabit per second Ethernet networks includes a switch with 1000BASE-X media. A gigabit interface connector (GBIC) module connects the switch to the device and allows autonegotiation. The switch includes a first GBIC interface with a transmitter and a receiver. The GBIC module includes a second GBIC interface with a transmitter and a receiver and a first copper interface with a transmitter and a receiver. The device includes a second copper interface with a transmitter and a receiver. The GBIC module waits for non-zero configuration ordered sets from the switch. The GBIC module stores configuration information from the switch and then sends FLP bursts to the device. 1000BASE-T autonegotiation is completed and a link is established between the GBIC module and the device. The GBIC module stores second configuration information from the device. Then, the GBIC module completes 1000BASE-X autonegotiation and establishes a link.
Abstract:
A transmit path in a physical layer device comprises a first transmit encoding device that has N outputs, that receives a first data stream at a first data rate and that performs a first type of encoding on the first data stream. A second transmit encoding device has an output, receives a second data stream at a second data rate and performs a second type of encoding on the second data stream. The first data rate is N times the second data rate. An output selector has a first set of N inputs that communicates with the N outputs of the first transmit encoding device, a second set of N inputs that communicate with the output of the second transmit encoding device and N outputs. The output selector selectively connects one of the first and second sets of N inputs to the N outputs.
Abstract:
A self-reparable semiconductor includes multiple functional units that perform the same function and that include sub-functional units. The semiconductor includes one or more full or partial spare functional units that are integrated into the semiconductor. If a defect in a sub-functional unit is detected, then that sub-functional unit is switched out and replaced with a sub-functional unit in the full or partial spare functional unit. The reconfiguration is realized with switching devices that are associated with the sub-functional units. Defective functional or sub-functional units can be detected after assembly, during power up, periodically during operation, and/or manually.
Abstract:
A cable tester that tests cable and that determines a cable status includes a pretest module that senses activity on pairs of the cable and that selectively enables testing based on the sensed activity. A test module is enabled by the pretest module, transmits a test pulse on one of the pairs, measures a reflection amplitude and calculates a cable length. The cable status includes an open status, a short status, and a normal status. The test module determines the cable status based on the measured amplitude and the calculated cable length. The test module measures received signals on at least one other pair after transmitting the test pulse on the one of the pairs, compares the received signals on the at least one other pair to a predetermined threshold, and determines a pair short status between the one of the pairs and the at least one other pair if the received signals exceed the predetermined threshold.
Abstract:
A network interface comprises a medium access control (MAC) device and/or a host interface. A regulator module communicates with the MAC device and/or the host interface and provides a first voltage level during an inactive mode and a second voltage level during an active mode. A physical layer (PHY) device that communicates with the MAC device and/or the host interface and the regulator module and that includes an energy detect module that detects energy on a medium during the inactive mode and an energy save module. The energy save module starts timing a first period and the regulator module transitions the MAC device and/or the host interface to the second voltage level when the energy is detected during the inactive mode. External communication with the MAC device and/or the host interface is enabled after the first period is up.
Abstract:
A physical layer device includes a deserializer that deserializes one of first and second data streams. The first data stream includes successive N-bit sequences having one of all ones and all zeros. A converter oversamples the first data stream, identifies edge transitions in the first data stream to locate N adjacent bits that substantially align with the N-bit sequences, and samples at least one bit of the N adjacent bits.
Abstract:
A first network device includes a first physical layer device with a first autonegotiation circuit. A bypass timer determines a predetermined period. A second network device includes a second physical layer device. The first network device enables autonegotiation bypass and establishes a link with the second network device after the predetermined period during which a link between the first and second network devices is not up, a receiver of the first physical layer device is in sync, and an ability detect state of the first autonegotiation circuit is true. The first autonegotiation circuit resets the predetermined period of the bypass timer when configuration code groups are received from the second network device. When the first network device receives idle code groups followed by data code groups, the first autonegotiation circuit does not return to an autonegotiation enable state.
Abstract:
A first network device supplies power to a second network device in communication therewith. The first network device comprises a physical layer device which includes a pulse generator to generate a test signal comprising n sub-pulses to be transmitted to the second network device, wherein in n being greater than 2. A detector is responsive to the second network device, and a controller is in communication with the detector and the pulse generator. When the detector detects j pulses which are greater than a predetermined threshold, 1≦j
Abstract:
A network device includes a first integrated circuit and a second integrated circuit. The first integrated circuit includes a media access controller and a first serializer interface in communication with the media access controller. The second integrated circuit includes a physical layer interface in communication with an external device. The second integrated circuit also includes a second serializer interface in communication with the physical layer interface and the first serializer interface. The second serializer interface communicates with the first serializer interface at a predetermined data transmission rate regardless of a negotiated transmission rate between the network device and the external device.
Abstract:
A physical layer device communicates over a cable and includes a cable tester that determines a cable status, which includes an open status, a short status and a normal status. The cable tester includes a pretest module that senses activity on the cable and selectively enables testing based on the sensed activity. A test module is enabled by the pretest module, transmits a test pulse on the cable, measures a reflection amplitude, calculates a cable length, and determines the cable status based on the measured amplitude and the calculated cable length. A digital signal processor (DSP) communicates with the cable and that has a digital gain parameter. A cable length estimator communicates with the DSP and estimates cable length based on the digital gain parameter.