Abstract:
A method of wirelessly communicating includes generating, at a wireless device, a packet including a first preamble field. The method further includes generating a first repeated preamble field by multiplying the first preamble field by a first frequency-domain polarity sequence. The method further includes transmitting the packet from the wireless device. The packet includes the first preamble field and the first repeated preamble field.
Abstract:
Methods and systems of providing uplink (UL) transmission power control are provided. The UL transmission power control is provided between access points (APs) and wireless stations in a multi-user (MU) unlicensed wireless network. The disclosed method includes participating in a first wireless communication between an AP and at least one station of a plurality of stations in an unlicensed wireless network, and using an uplink UL transmission power parameter transmitted from the AP to the at least one station to regulate UL power control of UL transmissions between the at least one station and the AP.
Abstract:
Methods and apparatus for communicating over a wireless communication network are disclosed herein. One method includes determining a total bandwidth for a transmission of a message according to a first specification, the total bandwidth including a plurality of tones, wherein a portion of the total bandwidth is occupied by a transmission according to a second specification different from the first specification. The method further includes logically dividing a plurality of useable tones into a plurality of resource units and determining an indication, the indication assigning and channel bonding at least two of the plurality of resource units to a wireless communication device of a plurality of wireless communication devices, wherein the indication does not assign the portion of the total bandwidth that is occupied by the transmission according to the second specification.
Abstract:
Methods and apparatus for signaling tone allocations in OFDMA communication are disclosed herein. In one aspect, the method includes determining a tone allocation which divides a plurality of tones between a plurality of wireless communication devices, the tone allocation including at least one of determining a plurality of subbands, each subband comprising an exclusive contiguous subset of the plurality of tones, at least one subband of the plurality of subbands assigned to two or more devices of the plurality of wireless communication and assigning a tone group size to each wireless communication device of the plurality of wireless communication devices, wherein the tone group size indicates a number of contiguous tones that the wireless communication device is allocated, wherein at least one tone group size is larger than one. The method also includes transmitting the tone allocation to each of the plurality of wireless communication devices.
Abstract:
Methods and apparatuses for providing wireless messages according to various tone plans can include a system including a memory that stores instructions. The system further includes a processor coupled with the memory. The processor is configured to execute the instructions to generate a message for wireless communication according to at least one of a set of 52 tones, for allocation to an individual device, including 48 data tones and 4 pilot tones, and a set of 106 tones, for allocation to an individual device, including 102 data tones and 4 pilot tones. The processor is further configured to execute the instructions to provide the message for transmission.
Abstract:
Methods, systems, and devices are described for managing wireless communications in a machine-to-machine (M2M) wireless Wide Area Network (WAN). A traffic slot map is generated. The traffic slot map identifies one or more first time slots and one or more second time slots. First data is transmitted during the one or more first time slots at a first data rate. Second data is transmitted during the one or more second time slots at a second data rate. The traffic slot map is broadcasted to one or more M2M devices during a traffic slot of a first forward link frame at a beginning of a traffic channel cycle.
Abstract:
Methods, devices, and computer program products for improving training field design in packets with increased symbol durations are disclosed. In one aspect, a method of transmitting a packet on a wireless communication network is disclosed. The method includes transmitting a preamble of the packet over one or more space-time-streams, the preamble including one or more training fields configured to be used for channel estimation, the one or more training fields each comprising one or more symbols of a first symbol duration. The method further includes transmitting a payload of the packet over the one or more space-time-streams, the payload comprising one or more symbols of a second symbol duration, the second symbol duration greater than the first symbol duration.
Abstract:
Methods and apparatus methods and apparatus for providing wireless messages according to various tone plans. In one aspect, an apparatus includes a processing system configured to allocate a resource for wireless communication to each of a plurality of devices. The resource includes at least one of a sub-band of frequencies or a subset of data tones within a single uplink or downlink tone plan. The processing system is further configured to provide the resource allocation to the devices. The processing system is further configured to process a message according to one of an uplink or downlink tone plan associated with at least one of the allocated sub-band or the allocated subset.
Abstract:
In one aspect, a method of high efficiency wireless (HEW) communication comprises generating a packet comprising one of a first value, a second value, a third value and a fourth value in a packet type field, the first value indicating a single-user multiple-input multiple-output (SU-MIMO) packet, the second value indicating a multiple-user multiple-input multiple-output (MU-MIMO) packet, the third value indicating an orthogonal frequency division multiple access (OFDMA) packet, and the fourth value indicating a multi-portion packet comprising at least a first MU-MIMO or OFDMA portion and a second MU-MIMO or OFDMA portion. The method further comprises allocating a plurality of bits of a first portion of the packet to each of a plurality of subsequent fields based at least in part on the value in the packet type field, wherein a second portion of the packet is the same for all of the first, second, third and fourth values.
Abstract:
Systems and methods of clear channel assessment on a wireless network are disclosed. In one aspect, a method includes determining a clear channel assessment (CCA) threshold based on a first transmission bandwidth, performing a first back-off procedure based on the determined clear channel assessment threshold; and transmitting a first wireless message in response to a completion of the first back-off procedure.