Beam refinement techniques in millimeter wave systems

    公开(公告)号:US10523300B2

    公开(公告)日:2019-12-31

    申请号:US16118284

    申请日:2018-08-30

    Abstract: Methods, systems, and devices for wireless communications are described that provide for refinement of receive beam beamforming parameters at a user equipment (UE). A UE may transmit two or more signals in an uplink transmission that have different beamforming parameters. A base station receiving the uplink transmission may measure the two or more signals, and identify a first signal of the two or more signals based at least in part on the measuring. The base station may inform the UE of the identified first signal, which the UE may use to set receive beam beamforming parameters for one or more subsequent downlink transmissions.

    ALIGNED LBT GAPS FOR SINGLE OPERATOR FBE NR-SS

    公开(公告)号:US20190335500A1

    公开(公告)日:2019-10-31

    申请号:US16394851

    申请日:2019-04-25

    Abstract: Aligned listen before talk (LBT) gaps for single operator frame-based equipment (FBE) mode new radio (NR) shared spectrum (NR-SS) is disclosed. Within the FBE mode network, the base station determines a plurality of potential transmission bursts within a fixed frame period. The base station may then reserve a plurality of LBT gaps prior to the starting position of each such transmission burst. The base station communicates the location of each of the LBT gaps to all neighboring network entities and contends for access to the fixed frame period at the beginning of the frame regardless of whether it has data for transmission during the frame. Each neighboring base station that receives the LBT gaps locations will use the same locations in order to align the LBT gaps over the FBE mode network.

    PREEMPTION INDICATION FOR LOW LATENCY COMMUNICATIONS ON DYNAMICALLY ALLOCATED RESOURCES

    公开(公告)号:US20190320448A1

    公开(公告)日:2019-10-17

    申请号:US16381277

    申请日:2019-04-11

    Abstract: Some wireless communications systems may support different types of communications between base stations and user equipment (UEs), such as mobile broadband (MBB) communications and low latency communications. Low latency communications may be associated with bursty and unpredictable transmissions. As described herein, to facilitate low latency communications and limit the latency associated with waiting on appropriate resources for transmitting low latency data, a base station may schedule downlink low latency transmissions on uplink resources or uplink low latency transmissions on downlink resources. Further, to limit the latency associated with scheduling low latency communications, a base station may be configured with a carrier for transmitting preemption indications (PIs) to one or more UEs to reassign resources for low latency communications. Similarly, in some cases, a UE may be configured with a carrier to transmit scheduling requests (SRs) to request resources for low latency communications.

    Periodic and aperiodic CSI reporting procedures for enhanced licensed assisted access

    公开(公告)号:US10440708B2

    公开(公告)日:2019-10-08

    申请号:US15986769

    申请日:2018-05-22

    Abstract: In enhanced licensed assisted access (eLAA), providing several approaches to report the CSI measurement may be desirable to provide flexibility in CSI reporting, especially in aperiodic CSI reporting. Further, a difference in using a licensed carrier and an unlicensed carrier may be considered during communication. In addition, assigning different transmit power usage based on different transmission types may be desired. The apparatus may be a user equipment (UE). The apparatus may be a UE. The UE receives a grant for uplink communication. The UE determines a reporting subframe based on the grant. The UE determines whether to select, as a reference subframe, a triggering subframe in which the grant is received or a subframe before the reporting subframe. The UE transmits, in the reporting subframe, channel state information (CSI) measured in the reference subframe.

    TECHNIQUES FOR CONFIGURING UPLINK TRANSMISSIONS USING SHARED RADIO FREQUENCY SPECTRUM BAND

    公开(公告)号:US20190289607A1

    公开(公告)日:2019-09-19

    申请号:US16432534

    申请日:2019-06-05

    Abstract: Techniques for wireless communications over a shared radio frequency spectrum band, may include techniques for transmitting uplink data transmissions using allocated uplink resources. Allocated uplink resources may include an uplink channel comprising a number of allocated interlaces of resource blocks (RBs) for use by a user equipment (UE). An incoming data stream may be processed and data separated into each of the allocated interlaces of RBs for the UE. Such separation may be through demultiplexing the data stream to obtain data for the allocated interlaces of RBs. The demultiplexed data may be mapped onto associated resource elements associated with the allocated interlaces of RBs, and transmitted. Different types of uplink channels, such as a physical uplink control channel (PUCCH), physical uplink shared channel (PUSCH) and/or a physical random access channel (PRACH) may be allocated to interlaces of RBs in one or more subframes of a transmitted radio frame.

    Uplink scheduling for license assisted access

    公开(公告)号:US10420139B2

    公开(公告)日:2019-09-17

    申请号:US15414045

    申请日:2017-01-24

    Abstract: Uplink scheduling for license assisted access (LAA) mode systems is discussed in which a base station transmits a conditional grant to served user equipments (UEs) that include a transmission configuration for uplink transmissions. The transmission configuration includes the parameters necessary for the UE to perform transmissions. Before the beginning of a uplink transmission opportunity, a base station transmits an uplink activation grant over a contention-based shared carrier to the served UEs. The uplink activation grant indicates the transmission opportunity to the UEs and may identify a subset of UEs out of the served UEs that are available for transmission. The base station first secures the channel before transmitting the uplink activation grant. Upon receipt of the uplink activation grant, the UEs determine whether they will perform uplink transmissions and, if so, transmit the uplink data according to the transmission configuration.

    BEAM MANAGEMENT FOR AUTONOMOUS UPLINK WITH ANALOG BEAMS

    公开(公告)号:US20190280836A1

    公开(公告)日:2019-09-12

    申请号:US16292293

    申请日:2019-03-04

    Abstract: Beam-specific autonomous uplink (AUL) resources may be configured with an associated reference signal for beam management. For example, a base station may configure respective sets of AUL resources that are specific to one or more base station receive beams. These sets of beam-specific AUL resources may be configured to be associated (e.g., quasi co-located (QCL)) with a reference signal, such as a channel state information reference signal (CSI-RS), a synchronization signal burst (SSB), or the like. The base station may periodically transmit the reference signals that are associated with the AUL resources. A user equipment (UE), upon detecting one or more of the reference signals, may identify which set of AUL resources are available for an AUL transmission of uplink data. In such cases, the UE may select a set of AUL resources based on a signal strength of the reference signal associated with that set of AUL resources.

    TECHNIQUES FOR CONFIGURING UPLINK CONTROL CHANNEL TRANSMISSIONS IN A SHARED RADIO FREQUENCY SPECTRUM BAND

    公开(公告)号:US20190274136A1

    公开(公告)日:2019-09-05

    申请号:US16418280

    申请日:2019-05-21

    Abstract: Uplink control channel transmission in a shared radio frequency spectrum band may be transmitted using different uplink resources UCI based on a format of uplink control information (UCI) to be transmitted in the uplink control channel transmission. Different time resources, frequency resources, or combinations thereof, for the transmission of UCI by a UE may be provided by a base station and selected by the UE based on a UCI format. The resources to be used for UCI transmission may semi-statically configured, or dynamically indicated to a UE. Uplink transmissions may be configured in interlaces of frequency resources, with each interlace having one or more segments, and a base station may configure different segments for transmission of different format UCI. In some cases, different subframes, or different component carriers, may be configured for different formats of UCI.

Patent Agency Ranking