Abstract:
Systems and techniques are described for detecting one or more timing errors. For example, a system can receive, from a navigation system, navigation timestamp information at a first instance and a second instance. The system can determine a navigation system time difference based on the navigation timestamp information at the first instance and the second instance. The system can further receive, from a wireless device, network timestamp information at the first instance and the second instance. The system can determine a network time difference based on the network timestamp information at the first instance and the second instance. The system can further determine whether time reporting by the navigation system is correct based on the navigation system time difference and the network time difference.
Abstract:
Method and apparatus for cooperative early threat detection and avoidance in C-V2X. In one aspect, the apparatus detects a threat entity within a threat zone based on data signals received from the threat entity, wherein the threat entity obstructs wireless spectrum or resources utilized in cooperative or automated driving decisions. The apparatus transmits, to at least one second wireless device, a message indicating the threat entity within the threat zone.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a device may receive a vehicle to everything (V2X) communication associated with a vehicle in an environment; determine, based at least in part on a vulnerability measure of a vulnerable roadside user (VRU) in the environment, a VRU notification profile associated with whether an alert is to be provided to a VRU to indicate vehicle data of the vehicle; and perform an action according to the VRU notification profile. Numerous other aspects are provided.
Abstract:
Example systems, methods, computer-readable media, and apparatuses for dynamic provisioning of wireless devices with health gateways are disclosed. One example method includes detecting, by a wireless device, a signal from a health gateway, the signal including connection information and service information; determining whether the health gateway is a suitable based on the connection information and the service information; and in response to determining that the health gateway is suitable, establishing a communications connection with the health gateway.
Abstract:
An apparatus for capturing a signal of interest, e.g., PSS and/or SSS, captures data transmitted by a WWAN for each of a plurality of communication frames. The data is captured for a capture length corresponding to a duration less than a periodicity of transmission of the signal of interest. Data is captured with a WLAN receive chain, and each capture occurs at a different point within its respective communication frame relative to other communication frames. The apparatus processes the plurality of data captures to form an equivalent continuous data corresponding to a duration greater than the periodicity of transmission. Because the continuous data has a duration greater than the periodicity of transmission of the signal of interest, the signal of interest is contained in the captured data, and PSS and/or SSS can be detected.
Abstract:
Techniques for aggregating wireless communications are provided. These techniques include a method for aggregating wireless communications traffic in a femtocell. The method includes receiving at a femtocell a stream of data packets for a mobile device from a wireless router, selecting a transmission mode for sending data packets of the stream of data packets from the femtocell to the mobile device. The first transmission mode includes transmitting the data packets from the stream via a Long Term Evolution (LTE) interface of the femtocell. The second transmission mode includes transmitting the data packets from the stream via a WiFi interface of the wireless router. The third transmission mode includes transmitting a first portion of the data packets to the mobile device via the LTE interface and routing a second portion of the data packets to the wireless router for transmission to the mobile device via the WiFi interface.
Abstract:
Apparatus and methods are disclosed that provide various incentive schemes for owners of low-power base stations to allow others nearby to use their base station, enabling offloading of some users from a nearby macrocell, thus helping improve overall network performance. For example, a “win-win” scenario might exist when a sharing opportunity at a low-power base station overlaps with a sharing opportunity at the neighboring macrocell. During this overlap, when the low-power base station provides access to its air interface to one or more UEs outside of a set of UEs associated with the low-power base station, an incentive credit may be received. Incentive credits can take various forms, and in some examples, may be in an amount that is a function of an amount of contribution to the network resulting from the provision of access to the air interface.
Abstract:
Methods, systems, and devices are disclosed for configuring maximum allowed transmit power for wireless communications systems. Some embodiments treat multiple traffic types, such as voice traffic and data traffic, separately with respect to one or more maximum allowed transmit power limits. In some cases, at least first transmit power limit for at least a first traffic type and/or at least a second transmit power limit for at least a second traffic type may be determined. At least the first transmit power limit with respect to the first traffic type or the second transmit power limit with respect to the second traffic type may be utilized. Some embodiments are configured to utilize flexible bandwidth carriers.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The method and apparatus resolve issues related to voice and data handovers between micro cells, femto cells and other small cells, and to handovers from macro cells to small cells are becoming increasingly significant as small cells are more widely deployed. In order to handoff a call associated with a user equipment, a base station attempts to identify neighboring cells that are within communication range of the user equipment based on a primary scrambling code and delays between multiple transmissions of the PSC detected by the user equipment and reported to the base station by the user equipment.
Abstract:
Methods, systems, and devices are provided that may support signaling, such as a Signaling Radio Bearer (SRB), over a flexible bandwidth carrier. For example, an SRB rate for a SRB over for a normal bandwidth carrier may be identified. A Transmission Time Interval (TTI) may be determined for the SRB over for the flexible bandwidth carrier that facilitates a SRB rate of the SRB over the flexible bandwidth carrier that maintains at least the SRB rate for the SRB over the normal bandwidth carrier. The determined TTI may be utilized for the SRB over the flexible bandwidth carrier, which may help avoid increased call setup delay, increased latency for handover, etc. that may be introduced in flexible bandwidth carrier systems. Some embodiments may include reducing spreading factors, increasing transmission power, and/or concatenating multiple transport blocks with respect to the SRB over the flexible bandwidth carrier.