Abstract:
A method and apparatus for controlling the operation of a normally open bypass valve in a steam turbine air inleakage exhaust vent pipe. The valve is used to bypass a flowmeter connected in a bypass pipe parallel with the valve. The flowmeter provides signals indicative of bypassed flow. The method and apparatus compares the signals from the flowmeter to a reference signal corresponding to a first predetermined flow rate and generates a valve closure signal if the flow through the flowmeter is less than the predetermined flow rate. If the valve is closed, the signals from the flowmeter are used to display the actual air inleakage exhaust rate. If the flow exceeds a second predetermined value, a signal is generated to open the valve for bypassing the exhaust through the valve around the flowmeter. During the second mode of operation, the flowmeter indicates only approximate inleakage exhaust flow rate. If the flow drops below the first predetermined value, the valve is again closed and the flow rate is measured by the flowmeter.
Abstract:
A method and device for monitoring the operation of a component which is located in a sealed enclosure and is movable into a selected operating position in response to an activating signal uses the steps of: generating a short-duration acoustic signal in the enclosure in response to the movement of the component into the selected operating position; sensing the acoustic signal at the exterior of the sealed enclosure; and determining the time relationship between the activating signal and the acoustic signal. The acoustic signal is generated by an element which is carried by or moveable with the component and which generates the acoustic signal by striking an interior surface of the enclosure when the component moves into the selected operating position.
Abstract:
A blade vibration monitor backpressure limiting system (BVMBLS), that in addition to direct blade vibration and condenser backpressure monitoring utilizes other plural types of other parallel, real time monitored power plant operation state (OS) information that influences blade vibration. The system references previously stored information in an information storage device that associates respective types of monitored OS information with blade vibration. The BVMBLS determines in real time a likelihood of whether any of the monitored operation states, alone or in combination with other types of monitored operation states, is indicative of a turbine blade vibration safe operation (SO). The BVMBLS determination is utilized to increase or reduce power generation load incrementally so that power efficiency and maximum load is enhanced while turbine blade vibration is maintained in a safe operation state. The previously stored information is updated to new association information.
Abstract:
A method is provided for monitoring velocity of a fluid flow through a predetermined fluid flow space. A fiber optic conductor includes a flow measurement portion defining an elongated dimension extending across a portion of the fluid flow space. The fluid flow in the fluid flow space causes the measurement portion of the fiber optic conductor to flex in a direction transverse to the elongated dimension. Optical radiation is supplied to the fiber optic conductor, and optical radiation is received from the fiber optic conductor after the supplied optical radiation has passed through the measurement portion. The received optical radiation is analyzed to effect a determination of a flow velocity of the fluid flow.
Abstract:
A method and apparatus for monitoring blade vibrations in a turbine engine having blade tip target portions associated with blades. An illumination conduit including a plurality of optical fibers conveys light from a light source to a transmission end of the optical fibers where the light is focused to define an axially elongated projected image. The blade tip target portions pass through the projected image and reflect light to a receptor array defined by receptor ends of a plurality of optical fibers forming an imaging conduit for conveying the reflected light to a sensor array. An imaging end of the imaging conduit radiates an image onto the sensor array that is identical to the reflected light image received at the receptor array to track tangential and axial movement of a predetermined point on the target portion.
Abstract:
A partial discharge coupler for detecting partial discharges in a conductor includes a frequency dependent network, a differential amplifier and a frequency selective coupling component. The frequency dependent network includes a first filter component, a fuse component and a load component, typically coupled together in series with reference to a first ground. The first filter component filters the high voltage, low frequency alternating current signal carried by the conductor from the load component and passes high frequency partial discharge pulse signals to the load component. The frequency selective coupling component couples in series between the differential amplifier and the load component. The output of the differential amplifier is configured to provide an output that is isolated from the ground connection for communicating detected partial discharge signals to partial discharge test equipment.
Abstract:
A marker pulse discriminator monitor that enables filtering of partial discharge pulses for monitoring the condition of a generator in a power plant system. The monitor detects partial discharge pulses emanating from the generator and includes a plurality of first modules connected to respective isophase buses adjacent to the generator. Each of the first modules generate a marker pulse in response to a partial discharge pulse. The monitor also includes an analyzer unit connected to the isophase buses adjacent to a step-up transformer. The analyzer unit receives each partial discharge pulse and each marker pulse and determines a differential value corresponding to a difference between a time of arrival of a partial discharge pulse and a time of arrival of a corresponding marker pulse to identify partial discharge pulses originating at the generator and to identify the isophase bus associated with the corresponding partial discharge pulse.
Abstract:
A method for identifying an unfolded non-synchronous blade vibration frequency in blades on a rotating rotor using a plurality of probes spaced from each other about the rotor. A set of data is acquired from the probes during a predetermined number of rotor revolutions and is processed using a Fourier analysis to generate an output representative of frequencies and phase shift angles corresponding to blade vibrations. The phase shift angles are used to identify a subharmonic for a blade vibration frequency to provide an output identifying the vibration frequency. A space dispersion and time dispersion of probes is described to increase the accuracy of the subharmonic determination using the phase shift angles.
Abstract:
A method and apparatus for monitoring blade vibrations in a turbine engine having blade tip target portions associated with blades. An illumination conduit including a plurality of optical fibers conveys light from a light source to a transmission end of the optical fibers where the light is focused to define an axially elongated projected image. The blade tip target portions pass through the projected image and reflect light to a receptor array defined by receptor ends of a plurality of optical fibers forming an imaging conduit for conveying the reflected light to a sensor array. An imaging end of the imaging conduit radiates an image onto the sensor array that is identical to the reflected light image received at the receptor array to track tangential and axial movement of a predetermined point on the target portion.
Abstract:
A method and system for monitoring the operating conditions of an electric generator. The system includes a triad sensor array formed within a predetermined section of a fiber optic conductor. The triad sensor array is formed of a group of sensors including a first sensor including a Bragg grating for producing a first signal representative of strain in a stator bar of the generator, a second sensor including a Bragg grating for producing a second signal representative of temperature in the stator bar, and a third sensor including a Bragg grating for producing a third signal representative of vibration amplitude in the stator bar.