Abstract:
The invention provides new and novel lithium-metal-fluorophosphates which, upon electrochemical interaction, release lithium ions, and are capable of reversibly cycling lithium ions. The invention provides a rechargeable lithium battery which comprises an electrode formed from the novel lithium-metal-fluorophosphates. The lithium-metal-fluorophosphates comprise lithium and at least one other metal besides lithium.
Abstract:
The invention provides an electrochemical cell which comprises a first electrode and a second electrode which is a counter electrode to said first electrode. The first electrode comprises a phosphorous compound of the nominal general formula Li3E′aE″b(PO4)3, desirably at least one E is a metal; and preferably, Li3M′M″(PO4)3. E′ and E″ are the same or different from one another. Where E′ and E″ are the same, they are preferably metals having more than one oxidation state. Where E′ and E″ are different from one another, they are preferably selected from the group of metals where at least one of E′ and E″ has more than one oxidation state.
Abstract:
The present invention provides a novel composition and method for preventing decomposition of one or more electrochemical cell components comprising an electrode having an active material, and an electrolyte. The method of the invention, for the first time, effectively overcomes problems which arise between the interaction of cell components and contaminate water retained in a cell. Such contaminate water reacts with the electrolyte which comprises a salt of lithium in a solvent. Solubilizing of the salt in solution with attendant interaction between the salt and water causes formation of hydrogen-containing acids. The method of the invention effectively blocks decomposition of a lithium metal oxide cathode active material, and particularly lithium manganese oxide (LMO, nominally LiMn.sub.2 O.sub.4). Such decomposition is prevented by including in the cell a basic compound which forms an electron donor species in the electrolyte solution; and by neutralizing at least a portion of the acid by reacting the donor species with the hydrogen-containing acids thereby preventing decomposition of the lithium manganese oxide by the acid. The preservation of the lithium manganese oxide prevents degradation of other cell components by other mechanism.
Abstract:
The invention provides an electrochemical cell which is at least partially charged and which comprises a first electrode having an active material in particle form consisting essentially of at least partially lithiated graphite. The lithiated graphite particles are prepared by chemically or electrochemically inserting lithium ions into the particles prior to assembly of the cell. A second electrode which is a counter electrode to the first electrode has an active material consisting essentially of vanadium oxide.
Abstract:
The invention provides a new positive electrode active material having increased capacity and a method for operating an electrochemical lithium cell or battery which has the new positive electrode active material composition. The positive electrode comprises first and second lithium-containing active materials which are different from one another. The invention provides the ability to overcome first cycle inefficiency typically observed when using a single lithium-containing metal chalcogenide by adding a small amount of a second lithium-containing metal chalcogenide, preferably lithium copper oxide.
Abstract:
A method of improving the structural integrity of polymer electrolytes of electrochemical cell by employing lithiated zeolites, and optionally, inorganic fillers selected from SiO.sub.2, Al.sub.2 O.sub.3, TiO.sub.2 and ZrO is provided.
Abstract translation:提供了通过使用锂化沸石和任选的选自SiO 2,Al 2 O 3,TiO 2和ZrO的无机填料来改善电化学电池的聚合物电解质的结构完整性的方法。
Abstract:
Non-aqueous electrochemical cells with improved performance can be fabricated by employing anodes comprising a composition having graphite particles that have a BET method specific surface area of about 6 to about 12 m.sup.2 /g and a crystallite height L.sub.c of about 100 nm to about 120 nm, and wherein at least 90% (wt) of the graphite particles are less than 16 .mu.m in size; a cathode; and a non-aqueous electrolyte containing a solvent and salt that is interposed between the anode and cathode. When employed in an electrochemical cell, the anode can attain a specific electrode capacity of at least 300 mAhr/g. The electrochemical cell has a cycle life of greater than 1500 cycles, and has a first cycle capacity loss of only about 10% to about 15%.
Abstract:
A concealed door hingedly-affixed to a concealed door frame adapted to resemble shelving and cabinets, the concealed door assembly simulated permanently-affixed shelving and cabinets, and comprising a playless hinge and various overlapping, double-stacked and interconnected components.