Abstract:
Embodiments of a transmission signaling structure for HEW are defined to carry packet information to configure OFDMA receivers for demodulation of a specific portion of the packet and/or to configure receivers for transmission using specific OFDMA and MU-MIMO resources. In some embodiments, the specific portion of the packet comprises one or more minimum bandwidth units of one or more 20 MHz channels. Each 20 MHz bandwidth structure may comprise several minimum bandwidth units to allow each 20 MHz channel to have a have smaller granularity than 20 MHz.
Abstract:
Embodiments of a system and methods for distinguishing high-efficiency Wi-Fi (HEW) packets from legacy packets are generally described herein. In some embodiments, an access point may select a value for the length field of a legacy signal field (L-SIG) that is non-divisible by three for communicating with HEW stations and may select a value for the length field that is divisible by three for communicating with legacy stations. In some embodiments, the access point may select a phase rotation for application to the BPSK modulation of at least one of the first and second symbols of a subsequent signal field to distinguish a high-throughput (HT) PPDU, a very-high throughput (VHT) PPDU and an HEW PPDU.
Abstract:
Embodiments of a transmission signaling structure for HEW are defined to carry packet information to configure OFDMA receivers for demodulation of a specific portion of the packet and/or to configure receivers for transmission using specific OFDMA and MU-MIMO resources. In some embodiments, the specific portion of the packet comprises one or more minimum bandwidth units of one or more 20 MHz channels. Each 20 MHz bandwidth structure may comprise several minimum bandwidth units to allow each 20 MHz channel to have a have smaller granularity than 20 MHz.
Abstract:
Embodiments of an access point and method for high-efficiency WLAN (HEW) communication are generally described herein. In some embodiments, the access point may be configured to operate as a master station and may configure an HEW frame to include a legacy signal field (L-SIG), an HEW signal field (HEW SIG-A) following the L-SIG, and one or more HEW fields following the HEW SIG-A. The L-SIG may be configured for transmission using a legacy number of data subcarriers, a legacy number of pilot subcarriers and a number of additional reference subcarriers modulated with a known reference sequence. At least one symbol of the HEW SIG-A and the one or more HEW fields following the HEW SIG-A of the HEW frame may be configured for transmission using additional data subcarriers. The additional data subcarriers may correspond to the additional reference subcarriers of the L-SIG.
Abstract:
Methods, apparatuses, and computer readable media are disclosed to signal a packet configuration. A HEW device to signal a packet configuration may include circuitry. The circuitry may be configured to generate a HE packet comprising a legacy signal field (L-SIG) followed by one or more HE signal fields and include in the L-SIG the packet configuration of the HE packet to signal to a second HEW device. The circuitry may configure a length field of the L-SIG to be a one or two modulo of three (MOD 3) to indicate the HE packet. The length field of the L-SIG may indicate that the HE packet includes a portion that has a one-quarter size subcarrier. The circuitry may set the length field of the L-SIG to be 1 mod 3 to indicate a first type of HE packet and to be 2 mod 3 to indicate a second type of HE packet.
Abstract:
Co-existence muting gaps can be included in an LTE protocol over unlicensed spectrum to enable a more efficient sharing with other wireless technologies, including wireless local area networks (WLANs). For example, an LTE protocol can be altered to include muting gaps that align with a WLAN beacon. In another example, a WLAN access point (AP) can create an information element (IE) that describes muting gaps available to WLAN stations (STAs) such that STAs can remain in a low power state until a muting gap is available. In yet another example, a cell tower and WLAN can be configured such that WLAN beacons occur when the cell tower is not transmitting during selected portions of LTE frames.
Abstract:
Methods, apparatuses, and computer readable media include an apparatus of an access point (AP) or station (STA) comprising processing circuitry configured to decode a legacy preamble of a physical layer (PHY) protocol data unit (PPDU), determine whether the legacy preamble comprises an indication that the PPDU is an extremely-high throughput (EHT) PPDU, and in response to the determination indicating the PPDU is the EHT PPDU, decode the EHT PPDU. Some embodiments determine a spatial stream resource allocation based on a row of a spatial configuration table, a row of a frequency resource unit table, a number of stations, and location of the station relative to the number of stations in user fields of an EHT-signal (SIG) field. To accommodate 16 spatial streams, some embodiments extend the length of the packet extension field, extend signaling of a number of spatial streams, and/or extend a number of EHT-SIG symbols.
Abstract:
Methods and systems for authenticated wake-up radio frames are disclosed. In one aspect, a method includes generating a wake-up radio (WUR) integrity group key (IGTK) for authentication of WUR frames when received by a wake-up radio (WURx). The WUR IGTK may be identified via a key identifier in the WUR frame. The key identifier may be updated when the WUR IGTK is updated, facilitating WUR IGTK key updating across multiple associated stations.
Abstract:
This disclosure describes systems, methods, and devices related to wake-up radio (WUR) advertisement channels. A device may include a wake-up receiver (WURx) and a primary connectivity radio. The device may determine a wake-up radio (WUR) discovery subchannel for WUR advertisement. The WUR discovery subchannel may be associated with a channel of a frequency band. The device may generate a WUR discovery frame comprising a WUR advertisement. The device may transmit, by the WURx, the WUR discovery frame to a second device using the WUR discovery subchannel. The device may identify a response from the second device indicating an acknowledgment of the WUR discovery frame.
Abstract:
Wireless devices, methods, and computer-readable media for transmitting and receiving beacon frames are disclosed. A master station is disclosed. The master station may include circuitry configured to operate in accordance with orthogonal frequency division multiple access (OFDMA) on a plurality of sub-channels and a primary channel. The circuitry may be further configured to assign a high-efficiency wireless local-area network (HEW) station to a sub-channel and transmit a legacy beacon on the primary channel with a first period. The circuitry may be further configured to transmit a HEW beacon on the sub-channel with a second period, wherein the second period is greater than the first period. The circuitry may be further configured to determine that the HEW station has data at the master station, and to transmit the HEW beacon on the sub-channel with an indication that the HEW station has the data. A HEW station is disclosed for receiving HEW beacons.