Abstract:
A method and device for decoding packets received via a wireless local area network. The method performed by the device including receiving a packet, the packet including a signal portion and a data portion, verifying the signal portion of the packet is valid, determining if the packet is destined for the device, determining if the packet is a retransmission, combining, when the packet is a retransmission, information from the data portion of the packet with stored information from a previously received packet having a data portion that was not successfully decoded and attempting to decode the packet based at least in part on the information and stored information.
Abstract:
Embodiments described herein relate to a system and method for providing flexible receiver configuration in wireless communication systems, such as 802.11 WLAN systems. In one embodiment, a wireless device may transmit a first data frame including first configuration information specifying a first configuration of the receiver to notify a remote device that the wireless device intends to configure its receiver according to the first configuration. After receiving an acknowledgement frame confirming the first configuration information, the wireless device may configure the receiver according to the first configuration. In another embodiment, a wireless device may receive a first data frame including first configuration information and further including a request that the wireless device configure its receiver according to the first configuration. In response, the wireless device may configure the receiver according to the first configuration. In either case, the wireless device may receive subsequent communications according to the first configuration.
Abstract:
This disclosure relates to orthogonal frequency division multiple access (OFDMA) communication in wireless local area networks (WLANs). According to some embodiments, a downlink OFDMA frame may be transmitted. An uplink OFDMA frame including acknowledgements associated with the downlink OFDMA frame may be received. The uplink OFDMA frame may be processed, in some instances including determining which devices receiving the downlink OFDMA frame transmitted an acknowledgement associated with the downlink OFDMA frame in the uplink OFDMA frame.
Abstract:
Embodiments described herein relate to a system and method for providing flexible receiver configuration in wireless communication systems, such as 802.11 WLAN systems. In one embodiment, a wireless device may transmit a first data frame including first configuration information specifying a first configuration of the receiver to notify a remote device that the wireless device intends to configure its receiver according to the first configuration. After receiving an acknowledgement frame confirming the first configuration information, the wireless device may configure the receiver according to the first configuration. In another embodiment, a wireless device may receive a first data frame including first configuration information and further including a request that the wireless device configure its receiver according to the first configuration. In response, the wireless device may configure the receiver according to the first configuration. In either case, the wireless device may receive subsequent communications according to the first configuration.
Abstract:
Some embodiments are directed to grouping electronic devices into contention groups to reduce uplink Orthogonal Frequency-Division Multiple Access (OFDMA) random access (OFDMA-RA) collisions. An access point may explicitly assign an electronic device to a contention group, or the electronic device may implicitly determine an assignment to the contention group. To explicitly assign a device to a contention group, the access point may randomly assign or assign based on a criteria of the electronic device. Examples of criteria include an association identifier (AID), a traffic type/quality of service (QoS) category, a power saving preference, and an association status. The electronic device may implicitly determine a contention group assignment based on the total number of contention groups. The electronic device may use the explicitly or implicitly assigned contention group number to determine whether the electronic device may contend for a given trigger frame random access (TF-R) frame.
Abstract:
In order to reduce power consumption of an electronic device during communication with another electronic device in a wireless local area network (WLAN), the electronic device analyzes fields in a given packet prior to a payload of the given packet to look for information that specifies a destination of the given packet. For example, the information may include: a full associated identification (AID) of the destination, a partial media-access-control (MAC) address of the destination; and/or a compressed (MAC) address of the destination. The information may be included in the preamble of the given packet. In particular, the information may replace length information in a high-throughput signal field in the given packet. Moreover, if the destination is other than the electronic device, the electronic device dumps the given packet and changes a power state of the electronic device, thereby reducing the power consumption.
Abstract:
During operation, an interface circuit in an electronic device may receive, from a second electronic device (such as an access point in a WLAN), an uplink trigger frame that may specify an access category. In response to the uplink trigger frame, the electronic device may first include data associated with the specified access category in one or more frames, and then may transmit the one or more frames to the second electronic device. Moreover, when all the data associated with the specified access category has been transmitted or when there is no data associated with the specified access category, and when there is leftover time in an allocation associated with the uplink trigger frame, the interface circuit may transmit the one or more frames to the second electronic device with additional data associated with another access category that is different from the specified access category.
Abstract:
Disclosed herein are system, method, and computer program product embodiments for providing an efficient way to signal a tone mapping in a wireless communication protocol. Embodiments operate by receiving a frame for a wireless communications protocol. The embodiments extract a unique value from a tone mapping field in a preamble of the frame. The embodiments look up a resource block allocation for a portion of the tone space in a lookup table using the unique value. The embodiments map the tones of the portion of the tone space to one or more resource blocks based at least in part on the determined resource block allocation.
Abstract:
A wireless access point transmits a protocol data unit (PDU) that includes data and signaling for a plurality of user devices. The PDU spans a channel in frequency and an interval in time, and includes a first signaling section, a second signaling section and a traffic action. For each of a plurality of subchannels of the channel: the first signaling section includes (within the subchannel) a corresponding redundant copy of common signaling information for the user devices associated with the access point; the second signaling section includes (within the subchannel) a corresponding set of user-specific signaling information for a corresponding group of one or more of the user devices; and the traffic section includes (within the subchannel) a corresponding set of traffic data for the corresponding group of one or more user devices. Subchannels sizes may be configurable. A signaling set CRC may be included per subchannel.
Abstract:
This disclosure relates to low energy communication techniques. According to some embodiments, a wireless transmission may be received by a wireless device. The wireless transmission may include a physical layer (PHY) preamble and PHY data. The PHY preamble may include destination information indicating a destination and length information indicating a length (or duration) of the wireless transmission. The destination and length information may be included prior to a portion of the PHY preamble configured for channel estimation. The wireless device may determine whether the wireless transmission is destined to the wireless device based on the destination information. If the wireless transmission is not destined to the wireless device, the wireless device may drop a remainder of the wireless transmission.