Abstract:
This disclosure describes systems, methods, and devices related to antenna configuration parameters. A device may determine one or more antennas having one or more phases. The device may determine a first delay associated with a first antenna of the one or more antennas. The device may determine a second delay associated with a second antenna of the one or more antennas. The device may cause to send a frame to a first station device using the first antenna, wherein the frame comprises a first indication of the delay associated with the first antenna and a second indication of the delay associated with the second antenna.
Abstract:
Methods, apparatuses, and computer readable media include an apparatus of an access point (AP) or station (STA) comprising processing circuitry configured to decode a legacy preamble of a physical layer (PHY) protocol data unit (PPDU), determine whether the legacy preamble comprises an indication that the PPDU is an extremely-high throughput (EHT) PPDU, and in response to the determination indicating the PPDU is the EHT PPDU, decode the EHT PPDU. Some embodiments determine a spatial stream resource allocation based on a row of a spatial configuration table, a row of a frequency resource unit table, a number of stations, and location of the station relative to the number of stations in user fields of an EHT-signal (SIG) field. To accommodate 16 spatial streams, some embodiments extend the length of the packet extension field, extend signaling of a number of spatial streams, and/or extend a number of EHT-SIG symbols.
Abstract:
Methods, computer readable media, and apparatus for determining a receive (Rx) number of spatial streams (NSS) for different bandwidths (BWs) and modulation and control schemes (MCSs) are disclosed. An apparatus is disclosed comprising processing circuitry configured to decode a supported HE-MCS and a NSS set field, the supported HE-MSC and NSS set field received from an high-efficiency (HE) station. The processing circuitry may be further configured to determine a first maximum value of N receive (Rx) SS for a MCS and a bandwidth (BW), where the first maximum value of N Rx SS is equal to a largest number of Rx SS that supports the MCS for the BW as indicated by the supported HE-MCS and NSS set field; and, determine additional maximum values based on an operating mode (OM) notification frame, and a value of an OM control (OMC) field. Signaling for BW in 6 GHz is disclosed.
Abstract:
This disclosure describes systems, methods, and devices related to a trigger-based null data packet (NDP) for channel sounding system. A device may send a trigger frame to a group of station devices, the group of station devices including a first station device, the trigger frame indicating a high efficiency (HE) long training field (HE-LTF) mode and a guard interval duration. The device may identify a HE trigger-based (TB) null data packet (NDP) received from the first station device, the HE TB NDP including a first packet extension field, wherein the HE TB NDP is associated with the HE-LTF mode and the guard interval duration indicated in the trigger frame. The device may send a downlink NDP including a second packet extension field, a second HE-LTF mode, and a second guard interval duration. The device may determine channel state information based on HE TB NDP received from the first station device.
Abstract:
Mechanisms for clear channel assessment associated with a communication channel in a wireless environment are provided. Implementation of the mechanisms provides fairness in the utilization of wireless communication resources among contemporaneous communication devices and legacy communication devices. The communication channel can be embodied in a primary channel or a secondary channel according to communication protocols within the IEEE 802.11 family of protocols.
Abstract:
Methods, apparatuses, computer readable media for beamforming smoothing and indication in a wireless network are disclosed. An apparatus of a wireless device comprising processing circuitry is disclosed. The processing circuitry is configured to decode a null data packet (NDP). The processing circuitry is further configured to determine beamforming vectors or matrixes from a channel matrix estimate from the NDP, and smooth the beamforming vectors or matrixes. The processing circuitry is further configured to configure the station to transmit feedback, the feedback including the smooth beamfortning vectors or matrixes, and decode a downlink (DL) physical layer convergence procedure (PLCP) protocol data unit (PPDU)(DL PPDU) from the access point where the DL PPDU beamformed based on the smooth beamforming vectors or matrixes.
Abstract:
Methods, apparatuses, computer readable media for multi-user (MU) request-to-send (RTS) and clear-to-send (CTS) with null data packet (NDP) CTSs and response polling. An apparatus of a wireless device comprising processing circuitry is disclosed. The processing circuitry may be configured to encode a MU-RTS including station identifications and indications of 20 MHz channels for the stations to transmit CTSs. The processing circuitry may be configured to configure the access point to transmit the MU-RTS. The processing circuitry may be configured to encode a trigger frame for polling, the trigger frame including the station identifications and indications of short feedback resource units for the stations identified by the station identifications. The processing circuitry may be configured to decode short feedback from the stations in accordance with the short feedback resource units where the short feedback is in response to the trigger frame for polling and the MU-RTS.
Abstract:
This disclosure describes methods, apparatus, and systems related to applying channel smoothing to beamformed vectors in wireless communications between a transmitter device and a receiver device. In a first aspect, a device is disclosed that identifies disruptions between at least two first beamforming vectors on adjacent frequencies in a communication channel between the device and a first device of a plurality of user devices. The device determines one or more second beamforming vectors proximate to the identified disruption. The device utilizes the one or more second beamforming vectors to smooth the communication channel between the device and the first device of the plurality of user devices.
Abstract:
Methods, computer readable media, and apparatuses for padding and decoding coding for a HE-SIG-B field are disclosed. An apparatus of an access point or station is disclosed. The apparatus is configured to determine a number of symbols of a longest high-efficiency signal B (HE-SIG-B) field of a plurality of HE-SIG-B fields. The processing circuitry may be further configured to encode a plurality of HE-SIG A fields to comprise a number of symbols of a longest HE-SIG-B field of the plurality of HE-SIG-B fields each HE-SIG-A field. The processing circuitry may be further configured to encode each of the HE-SIG-B fields of the plurality of HE-SIG-B fields to comprise a common block and a number of user blocks, and if a number of symbols to encode the common block and the number of user blocks is less than the number of symbols of the longest HE-SIG-B field, encode a duplicate portion.
Abstract:
This disclosure describes systems, methods, and devices related to a flexible connectivity framework. A first device may send a trigger frame to a second device. The first device may then receive an uplink bandwidth resource request from the second device. The first device may detect a high efficiency-long training field (HE-LTF) in the uplink bandwidth resource request. The first device may send an uplink multiuser trigger frame, and the first device may receive an uplink frame from the second device.