Abstract:
A splice kit is provided for repairing a cable having a central conductor, an insulator surrounding the central conductor, an outer conductive sheath surrounding the insulator, and a jacket surrounding the outer conductive sheath. The splice kit includes a central conductor joint that is electrically conductive and is configured to engage the central conductor of the cable such that the central conductor joint defines a portion of an electrical path of the central conductor. The splice kit also includes a dielectric insert configured to at least partially surround the central conductive joint and the central conductor of the cable, and an outer sheath joint that is electrically conductive and is configured to at least partially surround the dielectric insert. The outer sheath joint is configured to be electrically connected to the outer conductive sheath of the cable such that the outer sheath joint defines a portion of an electrical path of the outer conductive sheath. The splice kit further includes a jacket joint configured to at least partially surround the outer sheath joint and the jacket of the cable.
Abstract:
An article and process are described. The article includes a conductive heat-recoverable composite shield or a conductive heat-recovered composite shield formed from a conductive heat-recoverable composite shield. The conductive composite shield and/or the conductive heat-recovered composite shield formed from a conductive heat-recoverable composite shield comprises a non-conductive matrix and conductive particles within the non-conductive matrix. The article has a resistivity of less than 0.05 ohm·cm. A process of producing the conductive heat-recovered composite shield includes extruding the conductive heat-recoverable composite shield and heating the conductive heat-recoverable composite shield thereby forming the conductive heat-recovered composite shield.
Abstract:
A hybrid service terminal for use in a passive fiber optic network comprises a plurality of optical fiber connectors, each coupled to a respective optical fiber for receiving downstream optical frames from an Optical Line Terminal (OLT); a plurality of hybrid fiber/copper connectors, each of the hybrid fiber/copper connectors coupled to a respective one of the plurality of optical fiber connectors; and a plurality of electrical connectors configured to receive electrical signals from a multi-line converter module over a respective one of a plurality of electrical conductors. One of the plurality of hybrid fiber/copper connectors is configured to provide the downstream optical frames to the multi-line converter module for conversion to the electrical signals. Each of the plurality of electrical connectors is coupled to a respective one of the plurality of hybrid fiber/copper connectors for providing the electrical signals over a respective metallic drop cable coupled to a respective network terminal at a corresponding customer premise.
Abstract:
An adapter assembly includes a single-piece or two-piece multi-fiber adapter defining a recess at which a contact assembly is disposed. The adapter assemblies can be disposed within adapter block assemblies or cassettes, which can be mounted to moveable trays. Both ports of the adapters disposed within adapter block assemblies are accessible. Only one port of each adapter disposed within the cassettes are accessible. Circuit boards can be mounted within the block assemblies or cassettes to provide communication between the contact assemblies and a data network.
Abstract:
A patch cord including a connector attached to an end of an electrical cable. The connector includes a single-piece attachment member having a management section, a boot, and collar including a retention arrangement. Certain types of retention arrangements include one or more teeth that protrude inwardly from the collar to bite into at least an outer jacket of the electrical cable.
Abstract:
A composite coating includes a first layer, a second layer, and a fluoropolymer film disposed on the second layer. The first layer includes a polymer matrix with mica particles dispersed throughout, while the second layer includes a polyether ether ketone (PEEK).
Abstract:
One embodiment is directed to a subrack comprising a backplate and at least one tray configured so that a plurality of connections can be made at a plurality of positions on the tray. Each of the plurality of connections involves at least one connector having information stored in a device associated therewith that can be read. The backplate and the tray are configured so that the tray can be selectively attached and removed from the backplate. The backplate and the tray are configured so that the devices associated with the connectors involved in making the connections can be read via the tray. The devices associated with the connections can be implemented, for example, using RFID tags or connection point identifier (CPID) storage devices (such as EEPROMs).
Abstract:
One embodiment is directed to a tray for use in a subrack of a rack, the tray comprising a printed circuit board configured so that a plurality of connections can be made at a plurality of positions on the printed circuit board. Each of the plurality of connections involves at least one connector having an RFID tag associated therewith. The tray further comprises a plurality of RFID antennas integrated into the printed circuit board, each the RFID antennas associated with a respective one of the positions. The printed circuit board is configured to localize a field emitted from each RFID antenna so that only the RFID tag associated with that RFID antenna is energized and read.
Abstract:
One embodiment is directed to a interconnection system comprising at least one port at which an interconnection between at least two cables can be made, an RFID reader configured to read an RFID tag attached to at least one of the cables interconnected at the port, and an interface to connect a removable module to the system. The removable module comprises a rechargeable battery to power the system. The removable module is configured to provide a communication link to communicate data read by the RFID reader to a device outside of the interconnection system. Other embodiments are disclosed.
Abstract:
A work order is generated. The work order comprises a first work order step specifying that a port of a first network element is to be connected to a port of a second network element using a cable. The first and second network elements are configured to detect when connections are made at the specified ports of the first network element and the second network element. A management system is configured to update information it maintains to indicate that there is a connection between the specified port of the first network element and the specified port of the second network element if connections made at the specified ports of the first and second network elements are detected during a period in which the first work order step of the first work order is expected to be performed. A similar technique can be used for disconnecting a cable.