Abstract:
Each of the opposite ends of a patch cord carries a connector (20), wherein the identifier device (ID) has a body (30) in a “U” shape, having a basic leg (31) to be seated against an upper face (21) of the connector (20) and provided with an outwardly facing housing (33) and with at least one projection (34) facing inwardly of the body (30) and to be fitted inside of a crimping cavity (25) of the connector (20), the body (30) further having two side legs (32) than can be seated against respective opposite side faces (22) of the connector (20) and incorporating an inner end tooth (35) to be seated against the lower face (23) of the connector (20); an identifier tag (40) positioned on the housing (33); and a cover (50) closing the housing (33) and retaining the identifier tag (40) within the latter.
Abstract:
Systems and methods are provided for automatically detecting passive components in communications systems using radio frequency identification (“RFID”) tags. A coupling circuit is provided in a system between a communications network and an RFID tag. The RFID tag is associated with a passive element of a distributed antenna system (“DAS”). The coupling circuit can allow an RFID signal received from an RFID transmitter over the communications network to be transported to the RFID tag. The coupling circuit can substantially prevent mobile communication signals on the communications network from being transported to the RFID tag.
Abstract:
A fiber optic connector having a radio frequency identification tag for optically coupling with a mated fiber optic connector, comprising: a housing; a fiber ferrule extending from a first end of the housing; a spring member provided within the housing; a tail sleeve connected at a second end of the housing opposite to the first end to fix an end of an optical cable; and a tag receiving portion formed in a sidewall of the housing, wherein the radio frequency identification tag is received in the tag receiving portion, and wherein the tag receiving portion is separated from the spring member and the tail sleeve in a longitudinal direction of the housing. The RFID tag overlaps with only the non-metal housing and the non-metal protection sleeve in the lateral direction. As a result, it can eliminate the effect of metal materials in the fiber optic connector on the reading performance of the radio frequency identification tag.
Abstract:
Communications patching systems may include one or more patch panels, each of which has plurality of connector ports. A plurality of antennas are provided. Each antenna may be associated with a specific connector port. A radio frequency identification (“RFID”) transceiver and a controller are also provided. A switching circuit is coupled between an output of the RFID transceiver and the plurality of antennas. This switching circuit includes a plurality of switches that are configured to selectively couple one of the plurality of antennas to the output of the RFID transceiver under the control of the controller.
Abstract:
Radio frequency (RF)-enabled latches and related components, assemblies, systems, and methods are disclosed that affect control of mating and/or demating of components. In one embodiment, a component is provided that includes a body configured to be mated to a second component to establish a connection. A latch is disposed in the body and configured to either affect demating of the body from the second component or mating of the body to the second component, when the latch is not actuated. A transponder disposed in the body can be configured to actuate the latch to either affect demating of the body from the second component or mating of the body to the second component. The transponder can also be configured to actuate the latch based on the identification information of the second transponder received through the communication connection or lack of receiving identification information from a second transponder or reader.
Abstract:
A communications system includes a plurality of patch panels, wherein each patch panel has a plurality of connector ports on a front surface thereof that are each connected to a respective communication line, and one or more optical couplers/connector ports on a rear surface thereof for linking two or more patch panels together. A cable for linking patch panels includes opposite ends and a respective connector at each end that is configured to be removably secured within a respective coupler/connector port on the rear surface. Each connector has an RFID tag attached thereto. An RF antenna is secured to each patch panel adjacent each respective coupler, and each antenna is configured to activate and read information from a cable RFID tag when a cable connector is secured within a coupler adjacent thereto.
Abstract:
An intelligent network physical layer management system is provided that includes hardware that tracks the connection of plugs of patch cords in interconnect or cross-connect patching environments. RFID signaling is combined with near-field communication techniques to provide a reliable physical layer management system. In interconnect configurations, RFID tags are associated with switch ports of an Ethernet switch, enabling the system of the present invention to detect patch cord insertion and removal at switch ports and to receive information about the switch ports. In cross-connect configurations, RFID signaling is used to track the connections of patch cords between two patch panels. Systems according to the present invention avoid the problems associated with traditional galvanic connections previously used for tracking patch cord connections. An alternative common-mode system is also described.
Abstract:
A communications system includes a plurality of patch panels, wherein each patch panel has a plurality of connector ports on a front surface thereof that are each connected to a respective communication line, and one or more optical couplers/connector ports on a rear surface thereof for linking two or more patch panels together. A cable for linking patch panels includes opposite ends and a respective connector at each end that is configured to be removably secured within a respective coupler/connector port on the rear surface. Each connector has an RFID tag attached thereto. An RF antenna is secured to each patch panel adjacent each respective coupler, and each antenna is configured to activate and read information from a cable RFID tag when a cable connector is secured within a coupler adjacent thereto.
Abstract:
Methods of determining patch cord connectivity information include receiving, at each of a plurality of RFID readers, a signal from an RFID tag that is associated with a first patch cord and then, identifying the one of a plurality of connector ports that the first patch cord is connected to based at least in part on respective strengths of the signals received at each of the plurality of RFID readers. RFID triangulation systems and methods of calibrating such systems are also provided.
Abstract:
A system and method for monitoring connectivity in a cable system includes radio frequency identification (RFID) transponders on cable ends and RFID sensors at connection points. The RFID sensors are connected to a central monitoring system. Presence of a particular cable end at a particular connection point is detected and recorded by the central monitoring system.