Abstract:
The present invention is related to a method and system for transferring wireless transmit/receive unit (WTRU)-specific information to support enhanced uplink (EU) operation in a wireless communication system. A radio network controller (RNC) obtains WTRU-specific information, and transfers the WTRU-specific information to the Node-Bs. Each Node-B is configured to schedule uplink transmissions from a WTRU and utilizes the WTRU-specific information in operation of EU transmissions.
Abstract:
A wireless communication method and apparatus for reporting traffic volume measurement (TVM) information used to support enhanced uplink (EU) data transmissions between a wireless transmit/receive unit (WTRU), i.e., a mobile station, and a Node-B. After storing EU data in a buffer, the WTRU sends an initial TVM information request message to the Node-B indicating that the WTRU has EU data available to send to the Node-B. In response, the Node-B schedules one or more allowed EU data transmissions. The WTRU transmits at least a portion of the stored EU data to the Node-B via the allowed EU data transmissions. In one embodiment, the initial TVM information request message is sent by the WTRU only after the quantity of EU data stored in the buffer of the WTRU exceeds an established threshold. Otherwise, all of the stored EU data is transferred to the Node-B without requiring scheduling by the Node-B.
Abstract:
A system and method for configuring the system for configuring a wireless multi-cell communication to provide multimedia broadcast services (MBMS) to a plurality of wireless transmit/receive units (WTRUs). The cells of the communication system are organized into a plurality of sets of one or more cells. Resource units are assigned to each set of cells in the communication system. The assigned resource units are allocated in each cell of the communication system for MBMS transmission. The WTRUs receive information indicating how to access the resource units allocated for MBMS transmission. The WTRUs receive the MBMS from one or more of the cells of the communication system.
Abstract:
A method for accounting for the presence of a piggybacked acknowledgement/negative acknowledgement (PAN) field in reporting a received signal quality for a current wireless transmit/receive unit (WTRU) is disclosed. A determination is made whether a received radio block is intended for the current WTRU. The received signal quality of the radio block is measured if the radio block is intended for the current WTRU. Bits from the PAN field are included in determining the received signal quality of the radio block based on a preconfigured option. The radio block measurement is included in a measurement report if a data header of the radio block is not addressed to the current WTRU but the PAN field is addressed to the current WTRU.
Abstract:
A method and apparatus for operating a wireless transmit receive unit (WTRU) in basic transmission time interval (BTTI) and reduced transmission time interval (RTTI) mode includes a WTRU in RTTI mode and a WTRU in BTTI mode receiving a plurality of coded radio blocks, the WTRU in RTTI mode decoding all of the plurality of coded radio blocks and the WTRU is in BTTI mode decoding a portion of the plurality of coded radio blocks.
Abstract:
Data transmission is optimized in a wireless digital communication system including a base station and a plurality of user equipment mobile terminals (UEs). Adaptive modulation and coding (AM&C) is employed to achieve improved radio resource utilization and provide optimum data rates for user services. Blocks of downlink (DL) data are received by the base station which requests downlink DL channel quality measurements only from those UEs with pending downlink transmissions. The UEs respond to the request by measuring and reporting DL channel quality to the base station, which then allocates resources such that the UEs will make best use of radio resources. The base station notifies the UEs of the physical channel allocation indicating the modulation/coding rate and allocated slots followed by transmission of blocks of downlink data which are transmitted to the UEs.
Abstract:
A wireless communication system which comprises a plurality of base stations and a user equipment. Each base station transmits a common primary synchronization code (PSC) in a primary synchronization channel at a different timing within a system frame, and a midamble code in a broadcast channel. A transmitted power level of the PSC and midamble code are at a common fixed ratio for each base station. The user equipment (UE) is capable of conducting cell search and includes a receiver for receiving said PSCs, a signal power measuring device for measuring the power level of received PSCs and identifying a frame timing of received PSCs which exceed a power threshold, and a processor for analyzing data signals received in the primary synchronization channel associated with the PSC with the highest power level of the received PSCs with a threshold exceeding power level. The processor also synchronizes or maintains synchronization with the base station associated with the highest PSC, the data signals including secondary synchronization codes.
Abstract:
A wireless digital communication method for a plurality of user equipment mobile terminals (UEs) to communicate with a base station. Adaptive modulation and coding (AM&C) is used to achieve improved radio resource utilization and provide optimum data rates for user services. Blocks of downlink (DL) data are received by the base station which requests downlink DL channel quality measurements only from those mobile terminals (UEs) with pending downlink transmissions. The UEs respond to the request by measuring and reporting DL channel quality to the base station, which then allocates resources such that the UEs will make best use of radio resources. The base station notifies the UEs of the physical channel allocation indicating the modulation/coding rate and allocated slots followed by transmission of blocks of downlink data which are transmitted to the UEs.
Abstract:
The present invention discloses a method and system for enabling efficient reduction of TFCs in the TFCS to achieve desired transmission, while remaining within desired power and data requirements. Upon the UE transmission power requirement exceeding the maximum or allowable transmission power the MAC shall be informed for subsequent TFC selection of all TFCs that currently exceed this limit. The UE will then chose the TFC with the next lower transmission power requirement and the sequence will continue until an acceptable TFC is determined. The present invention also enables the replacement of the TFCs in the TFCS and advanced determination of non-supported TFCs. The TFCs that require transmission power greater then the maximum or allowed UE transmission power shall be determined continuously in every TTI, not just in TTIs where the maximum power has been exceeded.
Abstract:
The present invention provides a base station architecture that is modular in configuration, lowering the initial cost of implementing a new CDMA telecommunication system for a defined geographical region while allowing for future capacity. The scalable architecture is assembled from a digital base station unit that is configured to support a plurality of simultaneous wireless calls connecting to a conventional public switched telephone network. For initial startup, two base station units are deployed for redundancy in case of a single failure. Additional base station units may be added when the need arises for extra traffic capacity. If sectorization is required, the base station units may be directionally oriented. Coupled to and remote from each base station unit are two amplified antenna modules that contain an omni-directional or an external directional antenna, a high power RF amplifier for transmitted frequencies and a low noise amplifier for received frequencies. A separate power supply module capable of supporting two base station units provides continued service in the event of a mains power outage.