Abstract:
An onboard electronic lapping guide for lapping a magneto-resistive head having a magneto-resistive sensor element disposed for electrical communication with a pair of sensor electrical leads. The lapping guide includes an electronic lapping guide resistive element disposed for electrical communication with the sensor electrical leads. The resistive element has a predetermined height in a lapping direction and is adapted to produce an electrical resistance in the presence of a lapping current that increases as said resistive element height is reduced during lapping. A lapping method and a method of forming the onboard electronic lapping guide are also disclosed.
Abstract:
A method and system for monitoring tension associated with a robot-controlled belt utilized in a semiconductor wafer polishing apparatus. A belt tension monitor can be adapted for use with the semiconductor wafer polishing apparatus to detect a variable tension of the robot-controlled belt. An upper tension limit and a lower tension limit of the robot-controlled belt may then be monitored utilizing the belt tension monitor to prevent a breakage of the robot-controlled belt during a semiconductor wafer polishing operation thereby extending a life of the robot-controlled belt. The belt tension monitor can be installed at an inertial pulley of a robot associated with the semiconductor wafer polishing apparatus to detect the variable tension of the robot-controlled belt.
Abstract:
In a method for determining an endpoint in a chemical mechanical planarization (CMP) operation, the concentration of an oxidizing agent in the slurry byproduct generated during the CMP operation is monitored. The endpoint of the CMP operation is determined based on the concentration of the oxidizing agent in the slurry byproduct. The concentration of the oxidizing agent in the slurry byproduct may be monitored by diverting the slurry byproduct from a surface of a polishing pad, and measuring an optical property of the slurry byproduct diverted from the surface of the polishing pad. A CMP system configured to implement the method for determining an endpoint also is described.
Abstract:
In one illustrative embodiment, the method comprises providing a plurality of wafer lots, each of the lots comprising a plurality of wafers, performing at least one process operation on at least some of the wafers in each of the plurality of lots, identifying processed wafers having similar characteristics, re-allocating the wafers to lots based upon the identified characteristics, and performing additional processing operations on the identified wafers having similar characteristics in the re-allocated lots. In one illustrative embodiment, the system comprises a first processing tool for performing processing operations on each of a plurality of wafers in each of a plurality of wafer lots, a controller for identifying processed wafers having similar characteristics and re-allocating the wafers to lots based upon the identified characteristics, and a second processing tool adapted to perform additional processing operations on the identified wafers having similar characteristics in the re-allocated lot.
Abstract:
A system (10) for manufacturing a photocathode includes a support (12) and a polishing pad (14) disposed adjacent the support (12). The polishing pad (14) is operable to polish the photocathode in response to movable contact of the photocathode relative to the polishing pad (14). The system (10) also includes a rinsing system (16) coupled to the support (12). The rinsing system (16) is operable to deliver a rinsing agent to the polishing pad (14). The system (10) further includes a control system (62) operable to automatically regulate delivery of the rinsing agent to the rinsing system (16) at a predetermined time period.
Abstract:
On account of the constructional form of the tool head (17) according to the invention, the opposite sides (18, 19) of a tool (13) attached to the tool spindle (14) of a numerically controlled continuously generating gear grinding or hobbing machine are capable of machining the upper and lower sets of teeth (2, 3) of a double-sided face-gear (1) in one and the same set-up and without disturbing the synchronization between the rotations of the grinding worm and workpiece maintained during the grinding of the first set of teeth, without risk of collision. This eliminates the need to reset the workpiece (1) between the machining of the two sets of teeth (2, 3), thereby shortening the overall machining time substantially, and allowing the avoidance of accuracy losses due to the resetting of the workpiece (1).
Abstract:
A plurality of planarizing machines for microelectronic substrate assemblies, and methods of mechanical and chemical-mechanical planarization of microelectronic substrate assemblies are disclosed. The planarizing machines for processing microelectronic substrate assemblies generally include a table, a pad support assembly either positioned on or in the table, and a planarizing medium coupled to the pad support assembly. The pad support assembly includes a fluid container and an elastic membrane coupled to the fluid container. The fluid container generally is a basin either that is either a separate component that is attached to the table, or a depression in the table itself. The fluid container can also be a bladder attached to the table. The membrane generally has a first surface engaging a portion of the fluid container to define a fluid chamber or cavity, and the membrane has a second surface to which the planarizing medium is attached. The planarizing medium can be a polishing pad attached directly to the second surface of the membrane, or the planarizing medium can be a polishing pad with an under-pad that is attached to the second surface of the membrane. The fluid chamber is filled with support fluid to support the elastic membrane over the fluid chamber. The support fluid can be water, glycerin, air, or other suitable fluids that support the elastic membrane in a manner that allows the membrane and the planarizing medium to freely flex inward into the fluid chamber under the influence of a mechanical force to provide at least a substantially uniform distribution of pressure across the substrate.
Abstract:
A computer controlled grinding machine programmed so as to control the machine by calculating the wellhead demand positions which takes into account the difference in height between the workpiece axis of rotation and the grinding wheel axis of rotation to produce a height adjusted value for P. The following equation is used to compute the position demand values for a crankpin of a crankshaft, namely: P=(T* cos A)+(R+r)2−((T* sin A)+H)2), where P is the eight adjusted) demand position of the grinding wheel at each instant; R is the current radius of the grinding wheel; r is the target radius for the crankpin (18); T is the throw of the crankpin around the main crankshaft axis (16); A is the angular position of the crankshaft relative to the start position; and H is the vertical height between the two axes (the height error). The value for P is typically calculated for each of 3600 angular positions during one revolution of the crankshaft.
Abstract:
A polishing pad having an optical assembly that does not cause excess wear on a wafer workpiece. The optical assembly is disposed within the pad such that it may move in response to forces applied to the optical assembly.
Abstract:
A linear polisher for polishing a substrate that always provides a fresh abrasive surface for polishing and a method for linear polishing a substrate are described. In the linear polisher, a length of a polishing pad is supported on a pair of rollers which are driven by a motor means for either intermittently or continuously advancing the pad during a polishing process. A vibration generator which is connected to the polishing pad through an adaptor provides lateral, or vibration in a transverse direction of the pad throughout the polishing process. The present invention novel linear polisher enables substantially constant removal rate to be achieved throughout the pad life of a polishing pad without deterioration such as that normally seen in a conventional rotary or linear CMP apparatus. Optionally, a rotatable substrate holder is utilized to further improve the polishing uniformity of the linear polishing apparatus.