摘要:
A device and system for generating a broadband excitation signal and corresponding excitation field to a substance under test in an NMR system is presented. The excitation signal is generated, according to a broadband transmitter, to a coil in the NMR system. A corresponding broadband receiver is also presented that acquires a response signal resulting from a response field emanating from the substance under test. Neither the transmitter nor the receiver require that the frequency of operation be determined according to a particular configuration of electrical devices to determine a resonance characteristic that tunes to a particular operational frequency. Rather, the operational frequency is determined according to control and driver devices triggered according to command and control signals in the case of the transmitter, and according to reactive elements, that are not configured as a tuned circuit, in the case of the receiver.
摘要:
According to one embodiment, a magnetic resonance imaging apparatus includes a phase image generating unit, an image value acquisition unit and a frequency shift calculation unit. The phase image generating unit executes a sequence including an application of a bipolar gradient pulse and thereby generates a first phase image. The image value acquisition unit acquires an image value of the first phase image. The frequency shift calculation unit determines an amount of frequency shift per unit amount of gradient magnetic field based on magnetic field strength of the bipolar gradient pulse and on the image value of the first phase image.
摘要:
A method comprises: performing a number of B i field mapping sequences (24) using a set of radio frequency transmit coils (11) to acquire a B1 field mapping data set wherein said number is less than a number of radio frequency transmit coils in the set of radio frequency transmit coils; and determining coil sensitivities (30) for the set of radio frequency transmit coils based on the acquired B1 field mapping data set. In some embodiments, the performed B1 field mapping sequences are defined by (i) performing a linear transform (40) on the set of radio frequency transmit coils to generate a set of orthogonal virtual radio frequency transmit coils (42) and (ii) selecting (44) a sub-set (46) of the set of orthogonal virtual radio frequency transmit coils that define the performed B1 field mapping sequences.
摘要:
An MRI apparatus includes a magnetic resonance imaging (MRI) system having a plurality of gradient coils positioned about a bore of a magnet, an RF coil assembly having at least a first port and a second port, an RF transceiver system having a pulse module and configured to transmit RF signals to the first port and the second port, and a computer programmed to drive the RF coil assembly in quadrature through the at least first port and the second port, measure a B1 field using at least one flux probe at two or more angular orientations within the RF coil assembly, and characterize and optimize performance of the MRI system based on the measurements of the B1 field.
摘要:
A magnetic resonance imaging apparatus includes an imaging condition acquisition unit and an imaging unit. The imaging condition acquisition unit acquires at least one of optimum amplitude and optimum phase of a radio frequency transmission signal so as to reduce a deviation of data in at least one region of interest set in an object. The imaging unit acquires image data by imaging according to an imaging condition including at least one of optimum amplitude and optimum phase.
摘要:
The purpose of the present invention is to obtain an image with a desired contrast while minimizing specific absorption rate and without deteriorating image quality in a variable refocus flip angle sequence. To this end, Teequiv specified by a signal decay pattern SSP obtained by a flip angle changing pattern FAP is compared with a designated Teequiv, and the flip angle changing pattern FAP is changed according to the comparison result to search for the flip angle changing pattern FAP which gives a desired contrast. Then, the flip angle changing pattern FAP which is capable of realizing the designated Teequiv is determined. Then, imaging is performed using each flip angle constitutes the determined flip angle changing pattern FAP.
摘要:
In a method and magnetic resonance system for the acquisition of magnetic resonance data in a selected region of an examination subject, magnetic resonance data are acquired more than once using a magnetic resonance system, magnetic resonance data are acquired more than once from a selected partial region the portion of k-space filled with data corresponding to the selected region of the subject, and the multiply acquired magnetic resonance data are processed into a data set, the aforementioned partial region is selected so as to be located decentrally in k-space, meaning that it is asymmetrical relative to the center of k-space.
摘要:
This aims to shorten the time period, which is required for optimizing a radio-frequency magnetic field pulse intensity, thereby to shorten the measurement time period of an MRI entirety.In the operation for optimizing the radio-frequency magnetic field pulse intensity, an initial state for applying radio-frequency magnetic field pulses is intentionally created for a short time period, thereby to shorten the radio-frequency magnetic field pulse interval for the repeated applications.The radio-frequency magnetic field pulses are repeatedly applied at a predetermined time interval sufficiently shorter than the relaxing time period of the radio-frequency magnetic field pulses, and the state in which the magnetic resonance signal intensity becomes a threshold value or less is set to an initial state.
摘要:
The invention relates to a method of MR imaging of at least a portion of a body (10) of a patient positioned in an examination volume of a MR device (1). It is an object of the invention to provide a method that enables improved fat saturation. The method of the invention comprises the steps of: subjecting the portion of the body (10) to a calibration sequence comprising RF pulses and switched magnetic field gradients controlled in such a manner that a calibration signal data set is acquired by means of a multi-point Dixon technique at a first image resolution; deriving calibration parameters from the calibration signal data set; subjecting the portion of the body (10) to an imaging sequence comprising RF pulses and switched magnetic field gradients controlled in such a manner that a diagnostic signal data set is acquired at a second image resolution which is higher than the first image resolution; and reconstructing a diagnostic MR image from the diagnostic signal data set, wherein the MR device (1) is operated according to the derived calibration parameters during acquisition of the diagnostic signal data set and/or during reconstruction of the diagnostic MR image. Moreover, the invention relates to a MR device (1) for carrying out the method and to a computer program to be run on a MR device (1).
摘要:
In one embodiment, an MRI apparatus (20) includes a reference scan setting unit (100), a reference scan execution unit, and an image generation unit. The reference scan setting unit calculates a signal acquisition region of “a reference scan in which MR signals used for generation of a sensitivity distribution map of each coil element are acquired”, depending on an imaging region of a main scan of parallel imaging. The reference scan execution unit executes the reference scan on the calculated signal acquisition region. The image generation unit generates image data according to “MR signals acquired by the main scan” and “the sensitivity distribution map generated based on MR signals acquired by the reference scan”.