Abstract:
A system and method for inspecting a structure having a coating on at least one surface are provided. The system includes at least one ultrasonic sensor positioned proximate to the structure. Each sensor is capable of transmitting a shear wave toward the structure and receiving return signals in response thereto, wherein the shear wave includes at least one reference beam and at least one interrogating beam. The system further includes a data acquisition system in communication with the sensor for generating information indicative of the coating based on at least one return signal associated with the reference beam.
Abstract:
Quantification of a target analyte is performed using a single sample to which amounts of the target analyte are added. Calibration is performed as part of quantification on the same sample. The target analyte is detectable and quantifiable using label free reagents and requiring no sample preparation. Target analytes include biomarkers such as cancer biomarkers, pathogenic Escherichia coli, single stranded DNA, and staphylococcal enterotoxin. The quantification process includes determining a sensor response of a sensor exposed to the sample and configured to detect the target analyte. Sensor responses are determined after sequential additions of the target analyte to the sample. The amount of target analyte detected by the sensor when first exposed to the sample is determined in accordance with the multiple sensor responses.
Abstract:
Method and systems for non-destructive testing of a gas or liquid filled object at atmospheric pressure or high pressure. The method includes the steps of providing an acoustic pulse reflectometry (APR) system (200) having a wideband transmitter (210), a pressure sensor and short mixed wave tube (214) performing at least one calibration parameter, attaching the object to the APR system and performing a measurement to obtain at least one calibration parameter, attaching the object to the APR system and performing a measurement to obtain an object test result and processing the object test result and the at least one calibration parameter to obtain an object impulse response that reflects a status of the object.
Abstract:
Methods of estimating concentration of solids in a slurry comprising solid material, liquid material, and optionally also gaseous material comprise passing a first ultrasonic pulse through a portion of the slurry, measuring amplitude of the first ultrasonic pulse, removing solid material from a portion of the slurry to provide a filtered liquid, passing a second ultrasonic pulse through a portion of the filtered liquid, and measuring amplitude of the second ultrasonic pulse. Measuring devices comprise a measuring device body having a passageway extending therethrough, and a sending transducer which sends ultrasonic pulses and which is mounted on the measuring device body. A system for estimating concentration of solids in a slurry comprises a containment structure defining a space for receiving a portion of the slurry, a containment structure defining a space for receiving a liquid material included in the slurry, and receiving transducers mounted on each of the containment structures.
Abstract:
A method of calibrating an individual sensor whose output varies with at least one operating condition. A generic calibration curve is produced for the variation of the sensor reading with the at least one operating condition for the particular sensor type of the individual sensor. Calibration readings are then taken for the individual sensor at just a small number of discrete values for the at least one operating condition which fall within the full range of operating values for the at least one operating condition for which the sensor is to be calibrated. Using the calibration readings, the generic calibration curve is then scaled in order to fit the generic curve to the individual sensor.
Abstract:
The invention relates to pseudo porosity standards, and methods for their manufacture and use, which substantially mimic the effect porosity has on ultrasonic sound as it passes through a cored composite laminate having porosity. An ultrasonic inspection reference standard for cored composite laminates having porosity may include a member having at least one thickness, at least one core, and at least one mesh. The member may be manufactured from a fiber-free polymer resin using a stereo lithography process. Use of the mesh may produce a standard which transmits ultrasonic energy, with the mesh scattering and attenuating the energy. Use of the core may aide in modeling a cored composite laminate. The manufactured reference standard may replace more costly porous, cored, composite laminate reference standards in the aircraft industry and in other non-aircraft applications.
Abstract:
Test sound wave is outputted from a speaker. A movable part of a three-axis acceleration sensor, which is a micro structure of a chip to be tested TP, moves due to the arrival of the test sound wave which is compression wave outputted from the speaker, that is, due to air vibrations. A change in the resistance value that changes in accordance with this movement is measured on the basis of an output voltage that is provided via a probe needles. A control part determines the property of the three-axis acceleration sensor on the basis of the measured property values, that is, measured data.
Abstract:
The present invention uses ISTS to measure trenches with near- or sub-micron width. The trenches can be etched in a thin film on in a silicon substrate. One step of the method is exciting the structure by irradiating it with a spatially periodic laser intensity pattern in order to generate surface acoustic waves. Other steps are diffracting a probe laser beam off the thermal grating to form a signal beam; detecting the signal beam as a function of time to generate a signal waveform; determining surface acoustic wave phase velocity from the waveform; and determining at least one property of the trench structures based on the dependence of surface acoustic wave phase velocity on the parameters of the structure.
Abstract:
The disclosure relates to pseudo porosity standards, and methods for their manufacture and use, which may substantially mimic the effect porosity has on ultrasonic sound as it passes through a composite laminate. An ultrasonic inspection reference standard for composite materials having porosity may include a member having at least one thickness and at least one discrete wire. The member may be manufactured from a fiber-free polymer resin using a stereo lithography process. The discrete wire may scatter and attenuate ultrasonic energy. The reference standard may replace more costly, porous, fiber-reinforced, composite reference standards in the aircraft industry and in other non-aircraft applications.
Abstract:
The invention relates to pseudo porosity standards, and methods for their manufacture and use, which substantially mimic the effect porosity has on ultrasonic sound as it passes through a composite laminate, such as a metallic interleaved composite laminate. An ultrasonic inspection reference standard for composite materials having porosity may include a member having at least one thickness, at least one metallic shim, and at least one mesh. A plurality of metallic shims and meshes may be disposed in alternating layers within the member. The member may be manufactured from a fiber-free polymer resin using a stereo lithography process. Use of the mesh may produce a standard which transmits ultrasonic energy, with the mesh scattering and attenuating the energy. Use of the metallic shim may aide in modeling a metallic laminate. The manufactured reference standard may replace more costly porous, fiber-reinforced, composite reference standards, such as porous metallic interleaved composite laminate reference standards, in the aircraft industry and in other non-aircraft applications.