Abstract:
The invention discloses a metering pump with a special-shaped cavity, which comprises a housing, a rotor and two cover plates. The housing is a cylinder with a special-shaped surface inner cavity, an inlet and an outlet, and the special-shaped surface inner cavity is formed by combining a circular arc surface with a non-circular arc surface. The rotor comprises a rotor body and two pairs of combined sliding plates, wherein the rotor body is a column body processed with a transmission shaft, a centering shaft and crisscross guide grooves, and the combined sliding plates are mounted in the guide grooves. The cover plates are flat plates processed with bearing holes. The two end surfaces of the housing are matched with the cover plates for constituting a sealed cavity. In the sealed cavity, the rotor is matched with the bearing holes on the cover plates through the transmission shaft and the centering shaft. External driving force couple is acted on the transmission shaft so as to enable the rotor to rotate. When the rotor rotates, the non-circular arc surface of the special-shaped surface inner cavity can enable the two pairs of the combined sliding plates to slide in a cross manner so as to suck in fluid from the inlet and press out the fluid from the outlet. When the rotor rotates one cycle, four standard volumes are formed in a cavity body and the equal quantity of the fluid flows by the cavity body when the rotor rotates every one cycle. The flow rate of the fluid is metered by counting the number of rotation cycles of the rotor.
Abstract:
A variable oil pump includes an inlet connected to supply oil into the housing of the variable oil pump an arc-shaped intake space formed in the housing to be connected to a pumping space between veins mounted on a rotor in the variable oil pump; and a buffer space having a large cross-sectional area than inlet and connected with inlet and intake space, such that it is possible to reduce pulse noise generated in the variable oil pump by reducing intake resistance and vortex which are generated in sucking oil at the intake side of the variable oil pump.
Abstract:
A method for attenuating hydraulic pump flow pulses is described. The method includes pumping a fluid at a first hydraulic flow rate to an operating device via the pump, the flow being in the form of discrete fluid pulses. Further, the method includes obtaining values of plurality of parameters related to the pulses produced by the pump and attenuating the pulses by modifying the first hydraulic flow rate to a second hydraulic flow rate based on the obtained values.
Abstract:
A variable displacement pump includes a pump structural member configured to change volumes of a plurality of working chambers by rotation of a rotor, so as to introduce oil through an inlet port into the working chambers and to discharge the oil through a discharge port, and further configured to oscillate a cam ring by a discharge pressure introduced into a control oil chamber. A first coil spring is provided to force the cam ring in a direction for increasing of a rate of change of the working-chamber volume. A second coil spring is provided to force the cam ring in a direction for decreasing of the rate of change of the working-chamber volume. The first and second coil springs are laid out on both sides of an arm portion of the cam ring in a manner so as to be opposed to each other.
Abstract:
A gear pump includes: a pump chamber formed in the housing; a gear disposed in the pump chamber; a side plate disposed between a wall of the pump chamber and the gear, and arranged to seal a side surface of the gear, the side plate including an annular receiving portion formed between the wall of the pump chamber and the side plate, the receiving portion having a bottom portion and a side wall portion; a seal member disposed in the receiving portion of the side plate, and arranged to liquid-tightly separate the low pressure chamber and the high pressure chamber of the pump chamber; a pressure introducing section arranged to introduce a pressure generated by the pump operation, to a space between the bottom portion of the receiving portion and the seal member, and thereby to separate the seal member away from the bottom portion of the receiving portion.
Abstract:
A gear pump comprises a drive gear being mounted for rotation about a first axis and having a plurality of gear teeth at a radially outer location. A driven gear is mounted for rotation about a second axis, and having a plurality of teeth at a radially outer location. The drive gear teeth engage the driven gear teeth at a contact face to cause the driven gear to rotate. Slots are formed in the contact face of one of the drive and driven gear teeth.
Abstract:
The invention provides an oil pump resonator in which various vibrations caused by pulsations that change in response to changes in oil pressure on a discharge port side can be attenuated by a resonator that comprises only one chamber, whereby the volume occupied by the resonator can be minimized. An oil pump in an engine, for feeding oil from a suction port to a discharge port through rotation of a rotor fitted in a pump housing, includes: a discharge flow channel communicating with the discharge port; a resonator comprising an introduction channel formed in the discharge flow channel and a chamber communicating with the introduction channel; and a piston having a leading end face section that makes up an inner wall face of the chamber, and reciprocating in response to pulsation changes. The piston slides so as to reduce the volume of the chamber as the frequency distribution of the pulsations becomes higher.
Abstract:
An exemplary pump includes a pump housing defining a pump cavity, a movable pumping member situated in the pump cavity, and at least one pressure-absorbing member located inside the pump housing. The housing also has an inlet and an outlet, and includes at least one interior non-wearing location that contacts liquid in the pump housing when the pump housing is primed with the liquid. The movable pumping member, when driven to move, urges flow of the liquid from the inlet through the pump cavity to the outlet. The at least one pressure-absorbing member is located inside the pump housing at the non-wearing location and contacts the liquid. The pressure-absorbing member has a compliant property to exhibit a volumetric compression when subjected to a pressure increase in the liquid contacting the pressure-absorbing member, the volumetric compression being sufficient to alleviate at least a portion of the pressure increase.
Abstract:
A motor-pump unit, in particular for a power steering system of a motor vehicle, comprises a housing, a pump, and a drive motor. The pump is constructed as a prefabricated pump module. Both the pump module and the motor are received directly in the housing.
Abstract:
An internal gear pump which has a crescent disposed between an outer rotor and an inner rotor having a trochoidal tooth profile, and which reduces vibrations caused by pulsations generated when the fluid is discharged. The internal gear pump has an outer rotor having internal teeth formed therein, an inner rotor disposed on the inner peripheral side of the outer rotor and having formed therein external teeth that mesh with the internal teeth, and a crescent disposed in a clearance between the outer rotor and the inner rotor. Pitch spacings of the external teeth of the inner rotor are formed as non-equal spacings, and pitch spacings of the internal teeth of the outer rotor correspond to the pitch spacings of the external teeth of the inner rotor.