Abstract:
System for tracking and assessing the condition of replaceable refractory elements in a metallurgic facility comprising: a) a plurality of identifiable metallurgical vessels, such as ladles, wherein each one of said identifiable metallurgical vessels comprises removable refractory elements, such as slide gate valve plates; b) a plurality of replacement refractory elements, wherein each replacement refractory element comprises a machine-readable identification tag comprising refractory element identification data; c) a reading station, such as an RFID workbench, for reading the machine-readable identification tags of a replacement refractory element positioned in a reading zone of the reading station; d) a refractory condition tool for assessing the condition of refractory elements coupled to anyone of said metallurgical vessels; e) a monitoring unit connectable to the reading station and the refractory condition tool.
Abstract:
Plate condition tool for the measurement of condition data of slide gate valve plates coupled to the slide gate valve of a metallurgic vessel, said slide gate valve comprising a collector nozzle, said plate condition tool comprising: a) a main body comprising an obturator for obturating at least partially the collector nozzle; b) a gas injecting device comprising a pressure regulator for injecting a gas in the collector nozzle through the obturator; c) a gas flow measuring device for measuring the flow of the gas injected by the gas injecting device d) a controller being communicatively connected to the gas flow measuring device and being configured to receive input data relating to the relative position of the slide gate valve plates; and wherein the obturator comprises a seal holder for holding a collector nozzle seal.
Abstract:
A method for transporting molten metal from one location to another. A transportable vessel that is not part of a reverbatory furnace, and that can be moved to different locations, has molten metal placed therein. The transportable vessel is then moved to a different location. A pump inside of the transportable vessel is then operated to move molten metal out of the transportable vessel.
Abstract:
The disclosure relates to a system and method for supporting, lifting, and dumping a tundish. The system includes a transporter, a carrier cradle, and a tilting mechanism. The transporter has a frame. The carrier cradle is operatively coupled to the transporter and adapted for engaging and supporting the tundish. The tilting mechanism is coupled to the transporter and coupled to the carrier cradle. The tilting mechanism includes an actuator, at least one longitudinal main arm, and a tilt linkage assembly. The tilting mechanism is configured to pivot the carrier cradle about a horizontal transverse axis for emptying contents of the tundish upon actuation by the actuator.
Abstract:
The present invention provides a carriage to transport a ladle and to transfer molten metal into equipment for pouring (hereafter, transfer carriage) whereby the investment cost can be reduced by having the equipment made compact, and the temperature of the molten metal can be maintained high, and the cycle time can be reduced, because the time to transport the molten metal can be less. Further, the present invention provides a transportation line for transporting the molten metal. This line requires a smaller space for its installation. The transfer carriage of the present invention comprises a transportation means that runs along the rails for transporting a ladle; a shifting means disposed on the transportation means, which shifting means moves in the direction that is perpendicular to the rails for transporting a ladle; a lifting mechanism attached to a pillar set upright on the shifting means, a tilting means disposed at a lifting member of the lifting mechanism; and a ladle-holding member that is supported by the tilting means at the axis of the tilting means, which member is tilted by the tilting means, and which can hold or release a receiving ladle, wherein the carriage transfers the molten metal in the receiving ladle into the ladle for pouring.
Abstract:
An apparatus and method for continuously casting thin steel strip include a pair of counter-rotatable casting rolls in a roll cassette laterally positioned to form a nip there between through which thin cast strip can be cast, adapted to support a casting pool of molten metal on the casting surfaces, an enclosure to support a protective atmosphere immediately beneath the casting rolls in the casting position, and an upper cover positioned below the casting rolls to move between a closed position covering the upper portion of the enclosure maintaining the protective atmosphere in the enclosure in the closed position and a retracted position enabling cast strip to be cast into the enclosure. A scrap receptacle positioned beneath the casting position movable in either direction to a discharge stations. Further, a movable tundish adapted to be transferred from a heating station to the casting position.
Abstract:
Disclosed is a transportable vessel for use in a factory for processing molten metal. The vessel is not connected to a reverbatory furnace and can be moved to different locations in the factory. The vessel includes a transfer conduit in communication with a cavity of the vessel. A molten metal pump can be positioned in the transfer conduit to move molten metal out of an outlet in communication with the transfer conduit and into another vessel without the need to tip or tilt the transportable vessel.
Abstract:
An apparatus and method for continuously casting thin steel strip include a pair of counter-rotatable casting rolls in a roll cassette laterally positioned to form a nip there between through which thin cast strip can be cast, adapted to support a casting pool of molten metal on the casting surfaces, an enclosure to support a protective atmosphere immediately beneath the casting rolls in the casting position, and an upper cover positioned below the casting rolls to move between a closed position covering the upper portion of the enclosure maintaining the protective atmosphere in the enclosure in the closed position and a retracted position enabling cast strip to be cast into the enclosure. A scrap receptacle positioned beneath the casting position movable in either direction to a discharge stations. Further, a movable tundish adapted to be transferred from a heating station to the casting position.
Abstract:
A method of continuously casting steel strip includes steps of providing rails positioned beneath a casting position and extending in opposite directions there from to discharge stations, supporting first and second scrap receptacles movable along the rails, engaging a seal between the first scrap receptacle and an enclosure enabling support of a protective atmosphere beneath a pair of casting rolls, disengaging the seal between the first scrap receptacle and the enclosure and moving the first scrap receptacle along the rails in a direction away from the second scrap receptacle to a discharge station, and moving the second scrap receptacle into the casting position and sealingly engaging the second scrap receptacle and the enclosure.