Abstract:
Health and wellness management techniques and devices are described including receiving data representing an activity profile defining parameters upon which a target score is established, acquiring sensor data representing subsets of acquired parameters based on sensors disposed in a wearable computing device, including an accelerometer configured to provide motion data as a portion of the sensor data, determining values for the subsets of the acquired parameters based on reference values for the parameters set forth in the activity profile, calculating an activity score based on the values, the activity score representing an attained portion of health-related activities, detecting a difference between the activity score and the target score, the difference exceeding a threshold, modifying a rate at which the activity score accrues as a function of the difference, and causing presentation of a representation of an overall score.
Abstract:
A new type of headset that employs adaptive noise suppression, multiple microphones, a voice activity detection (VAD) device, and unique mechanisms to position it correctly on either ear for use with phones, computers, and wired or wireless connections of any kind is described. In various embodiments, the headset employs combinations of new technologies and mechanisms to provide the user a unique communications experience.
Abstract:
Embodiments of the invention relates generally to electrical and electronic hardware, computer software, wired and wireless network communications, and computing devices, and more specifically to structures and techniques for managing power generation, power consumption, and other power-related functions in a data-capable strapband. Embodiments relate to a band including sensors, a controller coupled to the sensors, an energy storage device, a connector configured to receive power and control signals, and a power manager. The power manager includes at least a transitory power manager configured to manage power consumption of the band during a first power mode and a second mode. The band can be configured as a wearable communications device and sensor platform.
Abstract:
A data-capable band for medical diagnosis, monitoring, and treatment is described, including one or more sensors configured to gather data associated with diagnosis, monitoring or treatment of a medical condition, an application configured to determine the medical condition using the data gathered by the sensors, a memory configured to store the data and the application, and a notification facility configured to provide an array of notifications in relation to the monitoring and treatment of the medical conditions. The notifications may be alarms, may be designed to prompt movement, or may be associated with a drug regimen.
Abstract:
Techniques for component protective overmolding include selectively applying a protective material substantially over one or more elements coupled to a framework, forming an inner molding substantially over the framework, the one or more electrical elements coupled to the framework, and the protective material. In some examples, the inner molding is formed after the protective material has been selectively applied, forming an outer molding substantially over the inner molding and the outer molding is configured to protect the framework and to provide a surface configured to receive a pattern. Further, the outer molding may be configured to be removable if a defect is found during an inspection performed after the outer molding is formed.
Abstract:
Acoustic Voice Activity Detection (AVAD) methods and systems are described. The AVAD methods and systems, including corresponding algorithms or programs, use microphones to generate virtual directional microphones which have very similar noise responses and very dissimilar speech responses. The ratio of the energies of the virtual microphones is then calculated over a given window size and the ratio can then be used with a variety of methods to generate a VAD signal. The virtual microphones can be constructed using either an adaptive or a fixed filter.
Abstract:
Techniques for noise suppression systems coupled to one or more microphone arrays are described, including a housing, a first microphone, a second microphone, and a third microphone, where the third microphone functions as a common rear vent for the first and the second microphones.