Abstract:
A driving module including a driving source configured to generate power, a gear train including a decelerating gear set configured to receive driving power from the driving source and a ring gear attached to one side thereof, and a rotary joint including at least one planetary gear configured to rotate using power received from an output end of the decelerating gear set and to revolve along the ring gear is disclosed.
Abstract:
In a joint assembly of a walking assistance robot that is capable of performing an operation with 3 degrees of freedom, similarly to a user's joint, a rolling motion and a sliding motion are simultaneously made, and a rotation center changes so that the joint assembly can make a similar motion to that of an actual knee joint of the user. Thus, when the user wears the walking assistance robot and walks, misalignment can be prevented from occurring in the knee joint.
Abstract:
Provided is a method and device for walking assistance that may estimate a state vector of a foot of a user and a variance matrix corresponding to the state vector, adjust a probability of a contact sensor based on at least one estimate included in the estimated state vector in response to receiving a contact signal from the contact sensor, calculate a combination rate between a measurement value of an acceleration sensor and the estimated state vector based on a measurement error matrix including the adjusted probability, update the estimated state vector and the estimated variance matrix based on the calculated combination rate, determine whether the foot lands on the ground based on the updated state vector and the updated variance matrix, and change an operation mode of a walking assistance device based on a result of the determination.
Abstract:
Example embodiments relate to a link assembly and a leg supporting apparatus using the same. A top end of a frame mounted on a user's thigh can move along a downwardly-concave trajectory. A center of weight of the leg supporting apparatus placed on the top end of the frame converges on a lowest point of the downwardly-concave trajectory so that the user's weight can be stably supported.
Abstract:
A supporting frame and a motion assistance apparatus including the same may be provided. In particular, the supporting frame including a first frame including a hinge connecting portion, a second frame configured to slidingly move with respect to the first frame, and an assistance force sensing portion on at least one of the first frame and the second frame may be provided.
Abstract:
A driving module including a driving source configured to generate power, a rotary rod connected to the driving source to rotate by receiving the power from the driving source, a power conversion block coupled with the rotary rod to be straight-line-driven in a longitudinal direction of the rotary rod in response to a rotation of the rotary rod, and a power transmission unit configured to operate in response to a driving of the power conversion block is disclosed.
Abstract:
A frame module includes a frame configured to enclose a portion of a user, and at least one reinforcement belt of which both end portions are connected to both sides of the frame, thereby restricting a splaying level of the frame in a predetermined direction.