Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. In one aspect, an apparatus is configured to transmit user data in a first symbol of a first symbol type. The first symbol type has a first symbol duration, a first frequency bandwidth, and a first tone plan. The first tone plan includes a first valid start tone index, a first valid end tone index, and a first set of DC tones. The apparatus is further configured to transmit an LTF in a second symbol of a second symbol type. The second symbol type has a second symbol duration, a second frequency bandwidth, and a second tone plan. The second tone plan includes a second valid start tone index, a second valid end tone index, and a second set of DC tones.
Abstract:
Methods and apparatus for communicating over a wireless communication network are disclosed herein. One method includes determining a total bandwidth for a transmission of a message according to a first specification, the total bandwidth including a plurality of tones, wherein a portion of the total bandwidth is occupied by a transmission according to a second specification different from the first specification. The method further includes logically dividing a plurality of useable tones into a plurality of resource units and determining an indication, the indication assigning and channel bonding at least two of the plurality of resource units to a wireless communication device of a plurality of wireless communication devices, wherein the indication does not assign the portion of the total bandwidth that is occupied by the transmission according to the second specification.
Abstract:
Methods and apparatuses can be disclosed for communicating over a wireless communication network. One communication device includes a processor configured to allocate, or receive allocation of, at least a portion of a first sub-band of a channel and at least a portion of a second sub-band of the channel for use by the communication device. The communication device further includes a plurality of encoders configured to independently encode first and second data for wireless transmission over the first and second sub-bands, respectively. The communication device further includes a transmitter configured to transmit the independently encoded first and second data over the first and second sub-bands, respectively.
Abstract:
Methods and apparatuses for providing wireless messages can include, for example, an apparatus configured to provide wireless communication. The apparatus includes a memory that stores instructions and a processor coupled with the memory and configured to execute the instructions to select a dual sub-carrier modulation (DCM) mode or a non-DCM mode. The processor is further configured to select one or more interleaver parameters based on the selection of the DCM mode or the non-DCM mode. The processor is further configured to select a first set of interleaver parameters when the DCM mode is selected and a second set of interleaver parameters, different than the first set of interleaver parameters, when the non-DCM mode is selected. The processor is further configured to apply the one or more interleaver parameters to interleave data of a message. The processor is further configured to provide the message for transmission to a receiving device.
Abstract:
Methods and apparatus for providing wireless messages according to various tone plans can include a method of wireless communication. The method includes allocating a first allocation unit associated with a first tone plan having a first number of tones, for communication of one or more wireless messages by a wireless device. The method further includes allocating a second allocation unit, associated with a second tone plan having a second number of tones different from the first number of tones, for communication of one or more wireless messages by the wireless device. The method further includes selecting a combined tone plan for the wireless device based on at least the first tone plan and the second tone plan. The method further includes providing a wireless message for transmission by the wireless device according to the combined tone plan.
Abstract:
Methods and apparatuses for communicating over a wireless communication network using a resource unit are disclosed herein. One method includes generating a high-efficiency long training (HE-LTF) field, based on at least one of a sequence x=[+1, +1, +1, −1, −1, −1, +1, −1, −1, +1, −1], a rotation pattern C=[c1−cy], a sequence M1=[c1.*x, c2.*x, c3.*x, c4.*x, c5.*x, c6.*x, c7.*x, c8.*x, c9.*x, c10.*x, c11.*x], a sequence M2=[+1, +1, +1, +1, +1, −1, −1, +1, +1, −1, +1, −1, +1], and a sequence M3=[+1, +1, +1, −1, −1, +1, −1]. The method further includes transmitting the HE-LTF field.
Abstract:
A method of wirelessly communicating a packet including a first portion for transmission over at least one channel of a first transmission type and a second portion for transmission over at least one channel of a second transmission type. In one aspect, the method includes generating, at a wireless device, a packet including a first portion having a first symbol duration. The packet further includes a second portion having a second symbol duration greater than the first. The second portion can include a plurality of repeated portions of the signal field, the repeated portions having the second symbol duration. The first portion includes a first training field. The method further includes prepending or appending a second training field to the first portion. The second training field has the second symbol duration. The method further includes transmitting the packet.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. In one aspect, an apparatus includes a processor configured to allocate a plurality of resource blocks for wireless communication. The processor is further configured to transmit data on a first resource block of the plurality of resource blocks, in which the first resource block is associated with a first set of tone indices and a second set of tone indices, and the first set of tone indices is a set of nominal tone indices that is logically mapped to a second set of tone indices that is a set of physical tone indices.
Abstract:
Methods and apparatus for signaling tone allocations in OFDMA communication are disclosed herein. In one aspect, the method includes determining a tone allocation which divides a plurality of tones between a plurality of wireless communication devices, the tone allocation including at least one of determining a plurality of subbands, each subband comprising an exclusive contiguous subset of the plurality of tones, at least one subband of the plurality of subbands assigned to two or more devices of the plurality of wireless communication and assigning a tone group size to each wireless communication device of the plurality of wireless communication devices, wherein the tone group size indicates a number of contiguous tones that the wireless communication device is allocated, wherein at least one tone group size is larger than one. The method also includes transmitting the tone allocation to each of the plurality of wireless communication devices.
Abstract:
Methods and apparatus methods and apparatus for providing wireless messages according to various tone plans. In one aspect, an apparatus includes a processing system configured to allocate a resource for wireless communication to each of a plurality of devices. The resource includes at least one of a sub-band of frequencies or a subset of data tones within a single uplink or downlink tone plan. The processing system is further configured to provide the resource allocation to the devices. The processing system is further configured to process a message according to one of an uplink or downlink tone plan associated with at least one of the allocated sub-band or the allocated subset.