Abstract:
In some instances, ice can form on the surface of a compressor airfoil. If the ice dislodges, it can impact and damage other compressor components. Aspects of the invention relate to systems for detecting the presence of ice or water on a compressor vane during engine operation. A ceramic insulating coating can be deposited on a portion of the surface of the vane. A heater and a thermocouple can be provided near the outermost surface of the coating such that the thermocouple can sense heat from the heater. The heater and the thermocouple can be provided within the coating. The presence of water film and/or ice on the coating surface can be detected by taking a thermocouple measurement following a heater pulse. The presence of a water film or ice results in a delay in the temperature rise detected by the thermocouple.
Abstract:
Aspects of the invention relate to a system for assessing the condition of a thermal barrier coating on a turbine vane during engine operation. According to embodiments of the invention, one or more wires can be passed along the airfoil portion of the vane. The wires can extend over, within, or beneath the thermal coating. An electrical current can be passed along the wires, and electrical resistance can be measured across the wires. Thus, if a portion of the thermal coating becomes damaged, then the wires located in that area may break. A disconnect in the wires can lead to an increase in resistance across the wires, which can alert an operator to a problem. Some assessment systems can provide a general indication of the magnitude of damage and whether the damage is spreading.
Abstract:
Non-synchronous vibrations in blades on a rotating wheel, such as a turbine wheel, are measured using Fourier analysis adjusted to correct for uneven sampling produced by a pair of probes spaced from each other about the wheel by a probe angle (PA) other than 180.degree.. The Fourier transform matrix is phase shifted by an amount which is a function of the PA which is other than 180.degree., and the harmonic in which the mode of non-synchronous vibration is expected to be found. A scaling factor in the form of an inverse correction factor is applied to the frequency spectra produced by the phase shifted Fourier transform matrix to generate an output representative of the frequency and amplitude of the true excitation frequency which can be presented on a display.
Abstract:
The present invention provides a valve control apparatus which can be programmed to deliver a desired flow of gas. A valve 22 is connected to a stepper motor 28 which is controlled by a computer 32 to open or close the valve in steps within a gas flow line 24 to deliver a desired rate of flow. A flowmeter 30 is provided along the gas flow line 24 for measuring the flow and inputting this flow to the computer 32. The computer 32 calculates rate of flow information obtained from the flowmeter 30 and controls the stepper motor 28 to open or close the valve 22 as necessary in accordance with the received rate of flow information and a desired rate of flow preprogrammed into the computer 32. As a result, a precise desired rate of flow can be obtained. Also, position indicators 34 may be added to the valve 22 to indicate when the valve 22 is completely open or completely closed. The valve 22 may be provided with a return spring 36 to automatically close the valve 22 in the event of a power loss. The computer 32 may be programmed to detect a significant increase in the rate of gas flow being closing the valve 22 accordingly. Additionally, a pressure switch 38 may be provided along the gas flow line 24 to cause the valve 22 to close upon a pressure change. Finally, temperature 40 and pressure 42 sensors may be added along the gas flow line so that the computer 32 can calculate and maintain a specific mass flow of gas.
Abstract:
The movement of a rotating part of a machine is monitored by deriving a signal representing the motion of the rotating part, at least temporarily storing the derived signal, and analyzing the stored signal, with temporary storage being performed only on portions of the signal derived during spaced time intervals during each revolution of the rotating part.
Abstract:
A shaft torsion monitor comprises a plurality of sensors for sensing the angular position of various portions of the shaft under dynamic conditions and for producing sets of data representative of the sensed angular positions. A memory is provided for periodically storing one of the sets of data representative of the angular position of the various portions of the shaft in the absence of torsion. Circuitry is provided for subtracting the stored set of data from each of the other sets of data to eliminate the effects of noise. The resulting data is analyzed to determine the torsion experienced by the shaft.
Abstract:
A system for monitoring the clearance between a plurality of turbine blade shroud segments connected to form a turbine blade shroud and the stationary portion of the turbine comprises a sensor responsive to eddy currents generated in each of the shroud segments for producing input signals representative of the clearance between each shroud segment and the stationary portion of the turbine. Indicia are carried by the turbine blade shroud for causing the sensor to produce a known displacement signal. A processor is responsive to the input signals and the displacement signal for producing output signals indicative of the clearance between each shroud segment and the stationary portion of the turbine. The output signals have a predetermined relationship to the known displacement signal.
Abstract:
A method of determining the untwist of turbine blades under dynamic conditions is comprised of the steps of producing a first pair of blade passing event signals in response to a blade tip's movement past a pair of fixed sensors. The signals comprising the first signal pair are compared to one another to establish a first differential value. Another data point containing blade vibrational information is produced. The first differential value and the other data point are evaluated to discriminate between blade untwist and synchronous vibration. Based on the magnitude of the blade untwist, inferences can be drawn regarding the status of the turbine blade lashing wires.
Abstract:
Instrumentation and monitoring systems utilize, as differential temperature sensors, heated, split-well thermowells of duplex design, mounted to the sidewall of a pressure vessel and communicating through a penetration in the sidewall with the fluid state within the vessel. Each probe has at least one parallel axial bore therein, a related, selected pair of probes receiving respective heater and temperature sensing elements in the associated bores and together functioning as a differential temperature sensor producing distinguishable, differential temperature outputs representative of the presence of steam versus water. The systems monitor the differential temperature outputs of plural such sensors to produce alarm indications and perform verification and error checking of the sensor output indications. Duplex sensor embodiments permit toggling between different, selected such pairs of probes for on-line testing and verification of monitored conditions represented by the sensor output indications and of the operability of the elements and supporting circuits, under automatic and manual controls, and with on-line substitution of complementary elements in the event of element failure.
Abstract:
A light beam altering grid (20), having a graded slit density pattern (22), is mounted on a temperature responsive support structure (23) to traverse a light beam (28). The slit density (slit per unit length) of the grid (20) is greater at one end of the grid (20) and gradually reduces towards the opposite end of the grid (20). The grid (20) is disposed on a thermally responsive support (23) such as a bimetallic cantilever (23). The thermally responsive support (23) operates to bend by an amount dependent upon the temperature of the environment in which it operates. In this manner, the grid (20) disposed on the thermally responsive support (23) is positioned in dependence upon the environmental temperature. The grid (20) may be arranged, for example, such that at higher environmental temperatures, when the natural frequency of the support (23) is reduced, the grid (20) will be positioned such that the change in density of slit graduations intersecting the light beam (28) compensates for change in the vibration amplification factor of the bimetalic cantilever (23) caused by the elevated environmental temperature.