Abstract:
Embodiments of a User Equipment (UE) to support inter-frequency handover are disclosed herein. The UE may receive, from an Evolved Node-B (eNB), a measurement report configuration message that includes multiple measurement events to be determined at the UE. The UE may transmit a measurement report when a combined measurement event occurs. The combined measurement event may include a combination of the multiple measurement events according to a “logical AND” operator such that the combined measurement event occurs when the multiple measurement events occur. The measurement events may be related to signal measurements performed on one or more signals received at the UE from one or more cells configured for operation in the network.
Abstract:
Systems, methods, and device for adjusting an operation time of a radio link failure timer are disclosed herein. User equipment (UE) may be configured to communicatively couple to an evolved Universal Terrestrial Radio Access Network (E-UTRAN). The UE use different radio link failure timer parameters depending on the speed of the UE. The radio link failure timer may run for a longer time for rapidly moving UEs and run for a shorter time for slowly moving UEs. In an embodiment, the UE may scale the radio link failure timer by a scaling factor. In another embodiment, the UE may include multiple radio link failure timers for different speeds. The radio link failure timer parameters for each speed may be specified by the E-UTRAN in a one-to-one communication. The E-UTRAN may determine which parameters to use for each UE based on characteristics of the UE.
Abstract:
Embodiments of the present disclosure describe systems, devices and methods for system information acquisition in radio resource connection (RRC) connection reestablishment when Radio Link Failure (RLF) happens. Various embodiments may include a serving cell that provides system information of a neighbor cell to a user equipment (UE). When the UE detects an RLF event, the UE may determine whether the previously received system information is valid and proceed with RRC connection reestablishment based on the determination. Other embodiments may be described or claimed.
Abstract:
Technology for using an open mobile alliance (OMA) management object (MO) for congestion control in mobile networks is described. A novel type of OMA MO for application specific access control (ASAC) can include internet protocol (IP) flow descriptions that can be used to characterize applications with fine granularity. Priorities can be assigned to IP flows based on the IP flow descriptions. A user equipment (UE) can receive such an OMA MO and also receive application-barring information regarding a congestion level in a mobile network with which an application at the UE wishes to connect. The UE can have a connectivity manager (CM) that determines whether to allow the application to establish a connection with the mobile network based on the priority level of the application's associated IP flow and the application-barring information.
Abstract:
Embodiments of a User Equipment (UE), Evolved Node-B (eNB) and methods for communication in accordance with a packet convergence and link control (PCLC) layer are generally described herein. The UE may receive, from a Fifth Generation (5G) eNB, a first group of medium access control (MAC) protocol data units (PDUs) that include PCLC PDUs. In accordance with PCLC sequence numbers (SNs), the UE may reorder the PCLC PDUs and may decipher the PCLC PDUs. The UE may receive, from a legacy eNB, a second group of MAC PDUs that include packet data convergence protocol (PDCP) PDUs encapsulated in radio link control (RLC) PDUs. The UE may reorder the RLC PDUs based on RLC SNs and may decipher the RLC PDUs based on PDCP SNs that are exclusive to the RLC SNs.
Abstract:
An apparatus of a base station includes a memory device and processing circuitry operatively coupled to the memory device. The processing circuitry processes a buffer status report (BSR) from a user equipment (UE) indicating an amount of data in a buffer of the UE. The processing circuitry further determines a ratio of WLAN uplink data to be transmitted on a WLAN channel of the UE to long term evolution (LTE) uplink data to be transmitted on a LTE channel. Furthermore, the processing circuitry encodes a protocol data unit (PDU) indicating the amount, wherein the PDU is to be transmitted to the UE.
Abstract:
Systems, methods, and apparatuses may configure a measurement gap per frequency group and per cell. Measurement time and frequency resources may be associated with a carrier frequency, a cell, or both. Thus, a user equipment (UE) may determine the measurement configuration based on the carrier frequency, cell, or both. The number of synchronization sequences (SS) blocks in an SS burst may be based on the frequency band of the carrier frequency
Abstract:
Briefly, in accordance with one or more embodiments, user equipment (UE) comprising circuitry to connect to a network via a serving cell; and indicate to the network a measurement gap capability of the UE. The measurement gap capability includes information if the UE supports a carrier aggregation (CA) specific measurement gap and if the UE has two or more radio-frequency (RF) chains. The UE then receives a CA specific measurement gap configuration from the network for the two or more RF chains.
Abstract:
NCSGs may be used by a cellular network to, for example, enhance the signal measurement processes by which a UE performs inter-frequency measurements. In a first embodiment described herein, a UE may signal to the network, on a per-UE basis, the ability to support NCGS interruptions. In a first embodiment described herein, a UE may signal to the network, on a per-component carrier basis of the UE, the ability to support NCGS interruptions.