Abstract:
This invention relates to methods to prepare and compositions pertaining to branched ethylene-propylene copolymers that include at least 50% ethylene content by weight as determined by FTIR; a g′vis of less than 0.95; a Mw of 125,000 to 300,000; a methylene sequence length of 6 or greater as determined by 13C NMR, wherein the percentage of sequences of the length of 6 or greater is more than 32%; and can have greater than 50% vinyl chain end functionality.
Abstract:
Disclosed are novel hafnium-based metallocene catalyst compounds with the following characteristics: 1) 4,5-dialkyl substitutions on a fluorenyl ligand, and optionally additional substitutions, 2) a cyclopentadienyl ligand, optionally with substitutions, and 3) a bridging group from group 14 of the Periodic Table. Also disclosed are catalyst systems comprising such catalyst compounds and their uses thereof, and polymers produced using such catalyst systems.
Abstract:
This invention relates to novel bridged a hafnium transition metal metallocene catalyst compounds having two indenyl ligands substituted at the 4 position, preferably 4 and 7 positions, with a C1 to C10 alkyl, where the 2 and 3 positions are hydrogen (assuming the bridge position is counted as the one position) and the bridging atom is carbon or silicon which is incorporated into a cyclic group comprising 3, 4, 5, or 6 silicon and/or carbon atoms that make up the cyclic ring.
Abstract:
This invention relates to novel bridged a hafnium transition metal metallocene catalyst compounds having two indenyl ligands substituted at the 4 positions with a C1 to C10 alkyl, where the 3 positions are hydrogen (assuming the bridge position is counted as the one position) and the bridging atom is carbon or silicon which is incorporated into a cyclic group comprising 3, 4, 5, or 6 silicon and/or carbon atoms that make up the cyclic ring.
Abstract:
This invention relates to methods to prepare and compositions pertaining to branched ethylene-propylene copolymers that include at least 50% ethylene content by weight as determined by FTIR; a g′vis of less than 0.95; a Mw of 125,000 to 300,000; a methylene sequence length of 6 or greater as determined by 13C NMR, wherein the percentage of sequences of the length of 6 or greater is more than 32%; and can have greater than 50% vinyl chain end functionality.
Abstract translation:本发明涉及制备方法和涉及支链乙烯 - 丙烯共聚物的组合物,其包括通过FTIR测定的至少50重量%的乙烯含量; 小于0.95的g'vis; Mw为125,000至30万; 通过13 C NMR确定的6或更大的亚甲基序列长度,其中长度为6或更大的序列的百分比大于32%; 并且可以具有大于50%的乙烯基链末端官能度。
Abstract:
A process for making a poly alpha-olefin (PAO) having a relatively high vinylidene content (or combined vinylidene and tri-substituted vinylene content) and a relatively low vinyl and/or di-substituted vinylene content, as well as a relatively low molecular weight. The process includes: contacting a feed containing a C2-C32 alpha-olefin with a catalyst system comprising activator and a bis-cyclopentadienyl metallocene compound, typically a cyclopentadienyl-benzindenyl group 4 transition metal compound.
Abstract:
Provided herein are methods of making blended polymer compositions having enhanced elasticity. The present methods comprise the steps of producing a first polymer composition using a VTP catalyst system, producing a second polymer composition using a HMP catalyst system and combining the first polymer composition and the second polymer composition to make the blended polymer composition. The present methods include blending/combining the polymer compositions produced by different catalyst systems. One such catalyst system includes (i) a vinyl-terminated polymer (VTP) catalyst system comprising a VTP catalyst compound (referred to herein also as a “VTP catalyst”) and one or more activators. Another catalyst system includes a high molecular-weight polymer (HMP) catalyst system comprising a HMP catalyst compound (referred to herein also as a “HMP catalyst”) and one or more activators. The activators of these different catalyst systems can be the same or different in whole or in part.
Abstract:
This invention relates to a process to produce cyclic olefin containing polymer compositions using transition metal complexes of a dianionic, tridentate ligand that features a central neutral heterocyclic Lewis base and two phenolate donors, where the tridentate ligand coordinates to the metal center to form two eight-membered rings. Preferably the bis(phenolate) complexes are represented by Formula (I):
where M, L, X, m, n, E, E′, Q, R1, R2, R3, R4, R1′, R2′, R3′, R4′, A1, A1′, A3A2, and A2′A3′ are as defined herein, where A1QA1′ are part of a heterocyclic Lewis base containing 4 to 40 non-hydrogen atoms that links A2 to A2′ via a 3-atom bridge with Q being the central atom of the 3-atom bridge.
Abstract:
This invention relates to transition metal complexes of a multi-dentate ligand that features a neutral heterocyclic Lewis base and a second Lewis base, where the multi-dentate ligand coordinates to the metal center to form at least one 8-membered chelate ring.
Abstract:
The alkylation of transition metal coordination catalyst complexes (such as metallocenes and/or post-metallocenes) in non-polar solvents with high conversion to the dialkylated transition metal coordination catalyst complex may be accomplished by reacting (a) a transition metal coordination catalyst complex comprising a transition metal linked to at least one an anionic donor ligand and at least one leaving group having a non-carbon atom directly linked to the transition metal, (b) an aluminum alkyl, and (c) a fluoride salt at 0° C. to 85° C. in a non-polar solvent to yield an alkylated transition metal coordination catalyst complex.