Abstract:
An information management system according to certain aspects allows users to share a portion of a file (e.g., a document) stored in secondary storage. The user may specify a portion of a secondary storage file to share and send a link to the portion to another user. The other user can access the shared portion from the link, and just the shared portion may be restored from secondary storage. The system according to certain aspects provides a native view of secondary storage data on a client computing device. The index data and/or metadata relating to secondary storage data may be stored in native application format for access via the native source application.
Abstract:
A high availability distributed, deduplicated storage system according to certain embodiments is arranged to include multiple deduplication database media agents. The deduplication database media agents store signatures of data blocks stored in secondary storage. In addition, the deduplication database media agents are configured as failover deduplication database media agents in the event that one of the deduplication database media agents becomes unavailable.
Abstract:
According to certain aspects, a method can include receiving an indication that a restoration of a deduplication database using a secondary copy of a file associated with a secondary copy job is complete; retrieving a first data fingerprint from a data storage database, wherein the first data fingerprint is associated with the secondary copy job used to restore the deduplication database; retrieving a second data fingerprint from a deduplication database media agent, wherein the second data fingerprint is associated with the secondary copy job used to restore the deduplication database; comparing the first data fingerprint with the second data fingerprint to determine whether the first data fingerprint and the second data fingerprint match; and transmitting an instruction to the deduplication database media agent to rebuild the restored deduplication database in response to a determination that the first data fingerprint and the second data fingerprint do not match.
Abstract:
A system according to certain embodiments associates a signature value corresponding to a data block with one or more data blocks and a reference to the data block to form a signature/data word corresponding to the data block. The system further logically organizes the signature/data words into a plurality of files each comprising at least one signature/data word such that the signature values are embedded in the respective file. The system according to certain embodiments reads a previously stored signature value corresponding to a respective data block for sending from a backup storage system having at least one memory device to a secondary storage system. Based on an indication as to whether the data block is already stored on the secondary storage system, the system reads the data block from the at least one memory device for sending to the secondary storage system if the data block does not exist on the secondary storage system, wherein the signature value and not the data block is read from the at least one memory device if the data block exists on the secondary storage system.
Abstract:
A system according to certain aspects may include a secondary storage controller computer configured to: in response to a first instruction to obtain a first secondary copy of a first data set from a secondary storage device(s), the first instruction associated with a first restore operation: instantiate a first restore thread on a processor of the secondary storage controller computer; using the first restore thread, retrieve the first secondary copy from the secondary storage device(s); and forward the retrieved first secondary copy to a primary storage subsystem for storage; and in response to a second instruction to obtain a second secondary copy of a second data set from the secondary storage device(s), the second instruction associated with a second restore operation: using the first restore thread, retrieve the second secondary copy from the secondary storage device(s); and forward the retrieved second secondary copy to the primary storage subsystem for storage.
Abstract:
According to certain aspects, a method can include receiving an indication that a restoration of a deduplication database using a secondary copy of a file associated with a secondary copy job is complete; retrieving a first data fingerprint from a data storage database, wherein the first data fingerprint is associated with the secondary copy job used to restore the deduplication database; retrieving a second data fingerprint from a deduplication database media agent, wherein the second data fingerprint is associated with the secondary copy job used to restore the deduplication database; comparing the first data fingerprint with the second data fingerprint to determine whether the first data fingerprint and the second data fingerprint match; and transmitting an instruction to the deduplication database media agent to rebuild the restored deduplication database in response to a determination that the first data fingerprint and the second data fingerprint do not match.
Abstract:
An information management system according to certain aspects uses backup copies or other secondary copies of production data for the purposes of replicating production data to another client. The secondary copies can be deduplicated copies. By utilizing available secondary copies of the data for replication, the system can reduce the impact on the production machines associated with replication. Utilizing deduplicated copies not only reduces the amount of stored data, but also reduces the amount of data that is communicated between the source and the destination, increasing the speed of the replication process.
Abstract:
A system according to certain aspects may include a secondary storage controller computer configured to: in response to a first instruction to obtain a first secondary copy of a first data set from a secondary storage device(s), the first instruction associated with a first restore operation: instantiate a first restore thread on a processor of the secondary storage controller computer; using the first restore thread, retrieve the first secondary copy from the secondary storage device(s); and forward the retrieved first secondary copy to a primary storage subsystem for storage; and in response to a second instruction to obtain a second secondary copy of a second data set from the secondary storage device(s), the second instruction associated with a second restore operation: using the first restore thread, retrieve the second secondary copy from the secondary storage device(s); and forward the retrieved second secondary copy to the primary storage subsystem for storage.
Abstract:
According to certain aspects, an information management cell with failover management capability can include secondary storage computing devices configured to conduct primary data from a primary storage device(s) to a secondary storage device(s) during secondary copy operations, at the direction of a remote storage manager, wherein a first secondary storage computing device implements a failover storage manager configured to, in the event of a loss of connectivity between the cell and the remote storage manager: access a stored storage policy; initiate first and secondary copy operations according to the storage policy in which the first and second secondary storage computing devices are each involved in the creation of a first and second secondary copies; and subsequent to reestablishment of connectivity between the cell and the remote storage manager, transmit synchronization information associated with the secondary copy operations to the remote storage manager.
Abstract:
An information management system provides a data deduplication system that uses a primary table, a deduplication chunk table, and a chunk integrity table to ensure that a referenced deduplicated data block is only verified once during the data verification of a backup or other replication operation. The data deduplication system may reduce the computational and storage overhead associated with traditional data verification processes. The primary table, the deduplication chunk table, and the chunk integrity table, all of which are stored in a deduplication database, can also ensure synchronization between the deduplication database and secondary storage devices.