Abstract:
A computer network efficiently provides a multicast network flow to a multicast recipient across a multihomed network element. The multihomed network element includes network devices that receive multicast data from a source of a multicast network flow. Each particular network device that received the multicast data publishes a notification indicating that the multicast network flow is available from the particular network device. The computer network receives a subscription to the multicast network flow from a multicast recipient, and determines whether to bridge the multicast data across the multihomed network element based on a multicast configuration of the computer network. The multihomed network element provides the multicast data to the multicast recipient from at least one of the particular network devices that received the multicast data from the source of the multicast network flow.
Abstract:
In one embodiment, a method according to the present disclosure includes receiving a topology change message at a core edge node and performing a network address information removal operation. The core edge node participates in network communications with one or more access network nodes of an access network using an access network protocol. The topology change message indicates that a topology change has occurred in the access network, and the topology change message conforms to the access network protocol. The network address information removal operation removes network address information stored by the core edge node, and the network address information is used by the core edge node in participating in the network communications.
Abstract:
In one embodiment, a method is described. The method includes receiving a network communication at a network device of a redundancy group. The redundancy group comprises a plurality of network devices, and the plurality of network devices are addressed in a first network using an anycast address. The method further includes, if the network communication is received from the first network, forwarding the network communication into a second network. If the network communication is received from the second network, the method determines whether to forward the network communication into the first network based on a status of the network device in the redundancy group, and a result of a filtering operation.
Abstract:
A method is performed by a first provider edge (PE) of a redundancy group including provider edges configured with an Ethernet virtual private network (EVPN) segment identifier (EVI) and an Ethernet segment identifier (ESI) and that are multi-homed to a customer edge (CE). The method includes, upon receiving from the CE a join request including a group address for a multicast stream, electing a designated forwarder (DF) for the multicast stream. The electing includes: computing for each PE a respective affinity for the DF as a function of a respective address of the PE, the EVI, and the group address; and determining which PE has a largest affinity. The method further includes, if the first PE has the largest affinity or does not have the largest affinity, configuring the first PE as the designated forwarder or not configuring the first PE as the designated forwarder for the multicast stream, respectively.
Abstract:
In one embodiment, when an ingress provider edge (PE) device of a computer network domain receives a frame at the ingress PE device destined to a destination media access control (MAC) address, it can determine whether the frame was received on a root or leaf Ethernet ingress segment, and also whether the destination MAC address is located via a root or leaf Ethernet segment. Accordingly, the ingress PE device may either drop or forward the frame based on the ingress Ethernet segment and destination MAC address Ethernet segment being either a root or a leaf, respectively.
Abstract:
In one embodiment, a method includes a method includes obtaining traffic, determining a host Media Access Control (MAC) address, and determining a host Internet Protocol (IP) address using the traffic. The method also includes generating an Ethernet virtual private network (E-VPN) MAC route advertisement that includes both the host MAC address and the host IP address and generating an IP virtual private network (IP-VPN) route advertisement that includes the host IP address.
Abstract:
Systems, methods, and computer-readable media for fast convergence for virtual ethernet segments in EVPN and PBB-EVPN networks are disclosed. A first provider edge (PE) device can receive one or more advertising messages corresponding to one or more virtual ethernet segments, wherein each of the one or more advertising messages can include a port identifier. The first PE device maintains a table including the one or more virtual ethernet segments and the corresponding port identifier. The first PE device can receive a failure message from a second PE device that identifies a first port on the second PE device, and identifies, based on the table, at least one affected virtual ethernet segment that is associated with the first port. The first PE device can remove any routes that are associated with the at least one affected virtual ethernet segment and trigger mass designated-forwarding election for impacted virtual ethernet segments.
Abstract:
A technique is provided for mitigating loops in Ethernet networks. A first port in an Ethernet device receives an Ethernet frame. The frame includes a source identifier, a destination identifier, and a Virtual Local Area Network Identifier (VLAN ID). According to various embodiments, the VLAN ID (VID) has the encoding of both a community group as well as a source bridge ID. A VID database is accessed using the destination identifier and the VID to determine whether the first port has ingress enabled. A filtering database is accessed to determine an egress port for forwarding the Ethernet frame.
Abstract:
In one embodiment, when an ingress provider edge (PE) device of a computer network domain receives a frame at the ingress PE device destined to a destination media access control (MAC) address, it can determine whether the frame was received on a root or leaf Ethernet ingress segment, and also whether the destination MAC address is located via a root or leaf Ethernet segment. Accordingly, the ingress PE device may either drop or forward the frame based on the ingress Ethernet segment and destination MAC address Ethernet segment being either a root or a leaf, respectively.
Abstract:
In one embodiment, a method includes obtaining a first indication from a first source included in an Ethernet ring and obtaining a second indication from a second source associated with a provider edge (PE) node The method also includes determining when the first indication and the second indication are indicative of a direct failure of the PE node and determining when the first indication and the second indication are indicative of a ring partition failure associated with the Ethernet ring. The direct failure of the PE node is identified when it is determined that the first indication and the second indication are indicative of the direct failure of the PE node, and the ring partition failure associated with the Ethernet ring is identified when it is determined that the first indication and the second indication are indicative of the ring partition failure associated with the Ethernet ring.