Abstract:
An Ethernet link may comprise silent and active channels and may support energy efficient Ethernet communication. Training parameters from the one or more active channels may be utilized for determining and/or adjusting training parameters for silent channels prior to activation. Training parameters for silent channels may be determined based on copying training parameters from active channels. Determination of training parameters for silent channels may be based on a weighted average of the active channel training parameters. A delta between active channel training parameters from a prior time and subsequent time may be utilized to determine a correction factor for adjusting training parameters for a silent channel from a prior time. Silent channels may be adjusted based on active channel training parameters and then subsequently may be trained. Training parameters may be adjusted for one or more of an echo canceler, a near-end crosstalk canceler and a far-end canceler.
Abstract:
A system and method for Service Interoperability in Ethernet Passive Optical Network (SIEPON) energy saving statistics. Energy saving statistics can be collected from a plurality of subordinate nodes in a point-to-multipoint network through a mechanism that aggregates energy saving statistics as those energy saving statistics are reported upstream. Such aggregation of energy saving statistics can be advantageous in that the aggregated energy saving information can appear uncorrelated to individual subordinate nodes. Privacy concerns are thereby addressed.
Abstract:
A system and method for enhanced auto-negotiation for NGBASE-T. Link partners can be configured to exchange advanced NGBASE-T configuration information such as type, profile, capability and mode information of the PHY in one or more next page messages. Determined cabling parameters that are reflective of communication channel characteristics can be used in the auto-negotiation selection of a configuration for NGBASE-T operation.
Abstract:
Aspects of geotagged communications are described herein. In one embodiment, a data unit including a geotag field is received over an ingress port of a network component. In turn, the network component may determine a path for forwarding the data unit to a location associated with the geotag field and with reference to a forwarding decision index. The path may include a least distance hop or a least distance route for forwarding or routing the data unit. With reference to the forwarding path, the network component may identify an egress port for forwarding the data unit. The network component may also forward the data unit over the egress port. According to other aspects, geolocation data may enable a network component to implement geotag-based virtual local area networks, geotag-based multiprotocol label switching, geotag-based fault detection and isolation, or geotag-based firewalls and fencing in wired routers or switches, for example.
Abstract:
Systems and methods are provided for common mode testing for a system using an Ethernet subsystem. The Ethernet subsystem generates test signals that can be introduced at various points in the system to detect the effect of noise introduced by various elements of the system. By introducing test signals at various points in a system, common mode noise introduced into the system can be more accurately determined.
Abstract:
Aspects of a method and system for MAC and PHY synchronization for energy efficient networking are provided. In this regard, an interface that enables communication between a MAC controller and a PHY device may be configured to operate in an energy saving mode. While the interface is operating in an energy saving mode, synchronization between the MAC controller and the PHY device may be maintained by one or both of adjusting a clock generated for the interface and/or communicating dummy data via the interface. The clock may be adjusted by one or more of adjusting a frequency of the clock, adjusting an amplitude of the clock, and/or duty cycling the clock. The MAC controller and/or the PHY device may generate the dummy data. The PHY device and/or the MAC controller may discard the dummy data upon receiving the dummy data.
Abstract:
An industrial process environment uses selective power-over-network (PoN) techniques to facilitate configuration, operation, communication, and other operations for the industrial nodes in the environment. The network may be an Ethernet network, and the environment may selectively deliver power-over-Ethernet as well as command, configuration, or other data over the network connection. The environment may perform the techniques over other types of networks or combinations of networks in addition to or instead of Ethernet networks.
Abstract:
A system may include equipment divided into control groups. Each control group may be assigned a supervisor node. A server computer may communicate with the equipment in a control group via the supervisor node associated with that control group. The server computer may store a profile of the equipment. The profile may contain physical locations of the equipment, settings of the equipment, components of the control groups, and the association of supervisor nodes with the control groups. A display unit may display the profile of the plurality of the equipment as an overlay of the physical locations of the plurality of equipment on a map.
Abstract:
System, method and apparatus for one-pair power over Ethernet in an automotive application. In one embodiment, a power sourcing equipment transmits a forward path current to a powered device via a single conductor pair and receives a return path current from the powered device via a chassis of an automotive vehicle.
Abstract:
A system and method for next generation BASE-T communication. Next generation BASE-T devices designed for communication over twisted pair Ethernet cabling are configurable based on the characteristics of the communication channel. In discovering the characteristics of the communication channel, the physical layer device (PHY) can select one of a plurality of operating modes that can support a given data transmission rate (e.g., 10 Gbit/s, 40 Gbit/s, 100 Gbit/s, 400 Gbit/s, etc.).