Abstract:
A technique for using an improved shield ring in plasma-based ion implantation is disclosed. In one particular exemplary embodiment, the technique may be realized as an apparatus and method for plasma-based ion implantation, such as radio frequency plasma doping (RF-PLAD). The apparatus and method may comprise a shield ring positioned on a same plane as and around a periphery of a target wafer, wherein the shield ring comprises an aperture-defining device for defining an area of at least one aperture, a Faraday cup positioned under the at least one aperture, and dose count electronics connected the Faraday cup for calculating ion dose rate. The at least one aperture may comprise at least one of a circular, arc-shaped, slit-shaped, ring-shaped, rectangular, triangular, and elliptical shape. The aperture-defining device may comprise at least one of silicon, silicon carbide, carbon, and graphite.
Abstract:
Techniques for temperature-controlled ion implantation are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for temperature-controlled ion implantation. The apparatus may comprise a platen to hold a wafer in a single-wafer process chamber during ion implantation, the platen including: a wafer clamping mechanism to secure the wafer onto the platen and to provide a predetermined thermal contact between the wafer and the platen, and one or more heating elements to pre-heat and maintain the platen in a predetermined temperature range above room temperature. The apparatus may also comprise a post-cooling station to cool down the wafer after ion implantation. The apparatus may further comprise a wafer handling assembly to load the wafer onto the pre-heated platen and to remove the wafer from the platen to the post-cooling station.
Abstract:
A method of doping includes depositing a layer of dopant material on nonplanar and planar features of a substrate. Inert ions are generated from an inert feed gas. The inert ions are extracted towards the substrate where they physically knock the dopant material into both the planar and nonplanar features of the substrate.
Abstract:
A technique for boron implantation is disclosed. In one particular exemplary embodiment, the technique may be realized by an apparatus for boron implantation. The apparatus may comprise a reaction chamber. The apparatus may also comprise a source of pentaborane coupled to the reaction chamber, wherein the source is capable of supplying a substantially pure form of pentaborane into the reaction chamber. The apparatus may further comprise a power supply that is configured to energize the pentaborane in the reaction chamber sufficiently to produce a plasma discharge having boron-bearing ions.
Abstract:
The present invention provides plasma processing systems and methods for providing a set-point temperature for substrates during plasma processing by controlling clamping force or RF power. The plasma processing system includes a plasma chamber, a controller, and an electrostatic power supply. The plasma chamber is arranged to receive an RF power and a source gas for producing plasma. The plasma chamber includes an electrostatic chuck for clamping a substrate in place during plasma processing. The electrostatic chuck includes an electrode and a sensor, which is arranged to monitor temperature of the substrate being processed. The controller is coupled to the sensor to receive the substrate temperature and is configured to generate a control signal for driving the substrate temperature to the set-point temperature. The electrostatic power supply is coupled between the controller and the electrode in the electrostatic chuck. The electrostatic power supply receives the control signal from the controller and generates a voltage adapted to clamp the substrate with a clamping force. In this configuration, the electrostatic power supply provides the voltage to the electrode to clamp the substrate such that the substrate temperature is driven to the set-point temperature.
Abstract:
A plasma processing system and method for processing substrates such as by chemical vapor deposition or etching. The system includes a plasma processing chamber, a substrate support for supporting a substrate within the processing chamber, a dielectric member having an interior surface facing the substrate support, the dielectric member forming a wall of the processing chamber, a primary gas supply supplying a primary gas such as process gas into the chamber, a secondary gas supply supplying a secondary gas such as a substantially inert, a substrate passivating or a reactant scavenging gas into the chamber, and an RF energy source such as a planar coil which inductively couples RF energy through the dielectric member and into the chamber to energize the primary gas into a plasma state. The secondary gas is concentrated near the periphery of the substrate, improving etching/deposition uniformity across the substrate surface.
Abstract:
A plasma processing system configured for use in processing a substrate after metal etching. The substrate includes a layer of photoresist disposed thereon. The plasma processing system includes a plasma generating region and a baffle plate disposed between the plasma generating region and the substrate. The baffle plate includes a central blocked portion disposed in a center region of the baffle plate. The baffle plate further includes an annular porous portion surrounding the central blocked portion. The annular porous portion includes a plurality of through holes configured for permitting a H.sub.2 O plasma generated in the plasma generating region to pass through the holes to reach a surface of the substrate. The plasma processing system also includes a chuck disposed below the baffle plate to support the substrate during the processing.
Abstract:
A new and distinct hybrid plant named `Himalaya` (Mentha arvensis) characterized by its higher yield of oil which is rich in menthol, improved regeneration potential, vigorous growth, deep green broad thick leaves, pinkish white flowers and tolerance to rust such as alternaria leaf blight, corynespora leaf spot and powdery mildew.
Abstract:
A technique for conformal processing of a substrate having a non-planar surface is disclosed. The technique includes several stages. In a first stage, some surfaces of the substrate are effectively processed. During a second stage, these surfaces are treated to limit or eliminate further processing of these surfaces. During a third stage, other surfaces of the substrate are processed. In some applications, the surfaces that are perpendicular, or substantially perpendicular to the flow of particles are processed in the first and second stages, while other surfaces are processed in the third stage. In some embodiments, the second stage includes the deposition of a film on the substrate.
Abstract:
Techniques for temperature-controlled ion implantation are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for temperature-controlled ion implantation. The apparatus may comprise a platen to hold a wafer in a single-wafer process chamber during ion implantation, the platen including: a wafer clamping mechanism to secure the wafer onto the platen and to provide a predetermined thermal contact between the wafer and the platen, and one or more heating elements to pre-heat and maintain the platen in a predetermined temperature range above room temperature. The apparatus may also comprise a post-cooling station to cool down the wafer after ion implantation. The apparatus may further comprise a wafer handling assembly to load the wafer onto the pre-heated platen and to remove the wafer from the platen to the post-cooling station.