摘要:
A method of fabricating a light emitting device includes forming a plurality of light emitting elements on light emitting element mounting regions, respectively, of a substrate, forming lens supports on the light emitting element mounting regions, respectively, are raised relative to isolation regions of the substrate located between neighboring ones of the light emitting element mounting regions, and forming lenses covering the light emitting elements on the lens support patterns, respectively.
摘要:
Provided are a method of fabricating a light-emitting apparatus with improved light extraction efficiency and a light-emitting apparatus fabricated using the method. The method includes: preparing a monocrystalline substrate; forming an intermediate structure on the substrate, the intermediate structure comprising a light-emitting structure which comprises a first conductive pattern of a first conductivity type, a light-emitting pattern, and a second conductive pattern of a second conductivity type stacked sequentially, a first electrode which is electrically connected to the first conductive pattern, and a second electrode which is electrically connected to the second conductive pattern; forming a polycrystalline region, which extends in a horizontal direction, by irradiating a laser beam to the substrate in the horizontal direction such that the laser beam is focused on a beam-focusing point within the substrate; and cutting the substrate in the horizontal direction along the polycrystalline region.
摘要:
The present invention provides a light-emitting element, a method of manufacturing the light-emitting element, a light-emitting device, and a method of manufacturing the light-emitting device. A method of manufacturing a light-emitting element includes: forming a first conductive layer of a first conductive type, a light-emitting layer, and a second conductive layer of a second conductive type on at least one first substrate, forming an ohmic layer on the second conductive layer and bonding the at least one first substrate to a second substrate. The second substrate being larger than the first substrate. The method further includes etching portions of the ohmic layer, the second conductive layer, and the light-emitting layer to expose a portion of the first conductive layer.
摘要:
Methods of fabricating of a light-emitting device are provided, the methods include forming a plurality of light-emitting units on a substrate, measuring light characteristics of the plurality of light-emitting units, respectively, depositing a phosphor layer on the plurality of light-emitting units using a printing method, and cutting the substrate to separate the plurality of light-emitting units into unit by unit. The phosphor layer is adjustably deposited according to the measured light characteristics of the plurality of light-emitting units.
摘要:
A method of fabricating a light emitting device includes forming a plurality of light emitting elements on light emitting element mounting regions, respectively, of a substrate, forming lens supports on the light emitting element mounting regions, respectively, are raised relative to isolation regions of the substrate located between neighboring ones of the light emitting element mounting regions, and forming lenses covering the light emitting elements on the lens support patterns, respectively.
摘要:
A light emitting device package is provided. The light emitting device package comprises a base substrate on which a wiring pattern is formed; a light emitting device mounted on the base substrate to emit light when supplied with driving power through the wiring pattern; a molded lens stably seated on the base substrate and having an inner space for sealing the light emitting device and reflective surfaces formed along outer sides facing the inner space to guide light from the light emitting device in an effective display direction; and a sealing resin between the inner space to bond the base substrate to the molded lens, whereby the packaging structure is simplified so that an assembly process and reliability testing are simplified, process losses due to defects are minimized, and the light extraction efficiency from the light emitting device and heat-dissipation performance are improved.
摘要:
A long life light-emitting diode (LED) module is provided. The LED module includes: a light-emitting chip; a phosphor layer formed of phosphor materials that transform light emitted from the light-emitting chip into light having a longer wavelength than the light emitted from the light-emitting chip; a capping layer that is formed on the light-emitting chip and protects the light-emitting chip; and a heat spreading plate that is disposed between the capping layer and the phosphor layer that dissipates heat generated in the light-emitting chip and the phosphor layer.
摘要:
Light-emitting devices are provided, the light-emitting devices include a light-emitting structure layer having a first conductive layer, a light-emitting layer and a second conductive layer sequentially stacked on a first of a substrate, a plurality of seed layer patterns formed apart each other in the first conductive layer; and a plurality of first electrodes formed through the substrate, wherein each of the first electrodes extends from a second side of the substrate to each of the seed layer patterns.
摘要:
A light-emitting device includes: a substrate; a light-emitting element is mounted on a first surface of the substrate; at least one uneven heat dissipation pattern is formed on at least one surface of the substrate; and an electrode covers at least a portion of the at least one uneven heat dissipation pattern and is connected to the light-emitting element.
摘要:
Provided are a light emitting package capable of controlling a color temperature, a fabricating method thereof, and a color temperature controlling method of the light emitting package. The light emitting package includes a package body, a first electrode and a second electrode formed on the package body and spaced apart from each other, a light emitting element formed on the package body and electrically connected to the first electrode and the second electrode, and a thin film resistor connected in series to the first electrode.