Abstract:
A charging member, which can be provided in a process cartridge and/or in an image forming apparatus, includes a conductive supporting member, an electrical resistance control layer formed on an outer circumferential surface of the conductive supporting member, and a nonconductive gap retaining member configured to retain a gap between the conductive supporting member and an image carrying member closely disposed to each other to have a constant distance. At least a portion of the nonconductive gap retaining member is mounted on the electrical resistance control layer at both ends of the conductive supporting member, and a circumference of the nonconductive gap retaining member projects from the electrical resistance control layer. An amount of projection of the gap retaining member from the electrical resistance control layer decreases as the gap retaining member tapers in a direction toward a center of an image formation region.
Abstract:
A cleaning device, a process cartridge, an image forming apparatus and toner are disclosed to maintain improved cleaning performance for a long time. The cleaning device includes a cleaning blade, an antifriction agent coating part and a toner removing part. The cleaning blade is disposed in contact with a surface of an image support body. The antifriction agent coating part coats a solid antifriction agent on the surface of the image support body, and is disposed in an upstream side from the cleaning blade with respect to a rotational direction of the image support body. The toner removing part removes toner particles, and is disposed in an upstream side from the antifriction agent coating part with respect to the rotational direction of the image support body.
Abstract:
An image forming apparatus includes a main body, and a process cartridge detachably disposed in the main body and an image bearing member. The image bearing member provides an image on a surface thereof and rotate at a predetermined linear velocity. A lubricant applying member contacts the image bearing member and applies a lubricant on the surface of the image bearing member while rotating with the image bearing member. The lubricant applying member includes a brush roller and is controlled to rotate at a linear velocity different from the predetermined linear velocity of the image bearing member at a contact portion with the image bearing member. In this way, the lubricant applying member applies an amount of the lubricant smaller than an amount of lubricant used when the image bearing member and the lubricant applying member rotate at an identical linear velocity.
Abstract:
An lubricant for electrophotography is applied to a latent image carrier that is supplied with toner having a sphericity of 0.94 or more. The lubricant for electrophotography is added with an inorganic additive having the following relationship: 2Y/1000≦X≦Y/10where Y is a toner particle size (micrometer), and X is an inorganic additive particle size (micrometer).
Abstract translation:将用于电子照相的润滑剂施加到具有球形度为0.94以上的调色剂的潜像载体上。 加入电子照相用润滑剂,添加具有以下关系的无机添加剂:<?in-line-formula description =“In-line formula”end =“lead”→> 2Y / 1000 <= X <= Y / in-line-formula description =“In-line Formulas”end =“tail”?>其中Y是调色剂颗粒尺寸(微米),X是无机添加剂粒度(微米)。
Abstract:
A cleaning unit includes a cleaning blade that cleans toner on an image carrier and a brush-shaped roller that applies a lubricant of a molded lubricant on the image carrier. The brush-shaped roller is insulative, and delivers the toner cleaned by the cleaning blade to inside of the cleaning unit.
Abstract:
A fixing device includes a rotary endless fixing belt; a nip forming member disposed in an interior of the fixing belt; a rotary opposed member to contact the nip forming member via the fixing belt to form a nip together with the fixing belt; a heat source to directly heat the fixing belt at a portion other than the nip, including at lease one heat-generation part disposed outside lateral ends of a maximum area of the fixing belt where a recording medium passes through, wherein a recording medium carrying an unfixed image is conveyed to the nip and the fixing device fixes the unfixed image onto the recording medium; and a shielding member disposed between the fixing belt and the heat generation part of the heat source and configured to shield heat from the heat source at least at an area outside the maximum passing area of the recording medium.
Abstract:
A toner container includes a container body, an opening, a cover, a toner discharge port, a shutter, a cylindrical structure, protrusions, and an identifier. The shutter is attached to the cover and includes a main shutter covering the toner discharge port. The main shutter moves between a closed position to close the toner discharge port and an open position to open the toner discharge port. The protrusions are on both sides of the cover and protrude in a direction orthogonal to a toner container mounting direction. The identifier is on the cover to indicate a toner color. The cylindrical structure's leading end is downstream of leading ends of the protrusions in the mounting direction. The main shutter's leading end is downstream of the protrusions' leading ends in the mounting direction when the main shutter is in the closed position. The protrusions are downstream of the identifier in the mounting direction.
Abstract:
An image forming apparatus includes a fixing device. The fixing device includes a rotatable endless fixing member, a nip forming member arranged inside the fixing member, a pressing member in contact with the nip forming member via the fixing member, and a heating source configured to heat the fixing member. When an abnormality occurs in at least one of the fixing device and other devices included in the image forming apparatus, a rotation of the fixing member is stopped prior to stopping a rotation driving of a discharging unit and, after stopping, the fixing member is controlled to rotate.
Abstract:
A fixing device includes an endless belt rotatable in a predetermined direction of rotation and a nip formation assembly disposed opposite an inner circumferential surface of the endless belt. An opposed rotary body is pressed against the nip formation assembly via the endless belt to form a fixing nip between the endless belt and the opposed rotary body through which a recording medium bearing a toner image is conveyed. A belt holder contacts and supports each lateral end of the endless belt in an axial direction thereof. The belt holder is isolated from the opposed rotary body with a first interval interposed therebetween in the axial direction of the endless belt.
Abstract:
A fixing device includes a heat source; a fixing member looped into a generally cylindrical shape to rotate in a circumferential direction thereof and partially heated by the heat source and to heat a surface of a recording medium bearing an unfixed toner image to fix the unfixed toner image thereon in a fixing process; a rotary pressing member disposed facing the fixing member to form a nip therebetween, through which the recording medium is transported in a transport direction; and a rotation driver to rotate one of the fixing member and the pressing member. In a case in which the fixing member is halted for a reason other than the fixing process while power of the fixing device is on, electric power is not supplied to the heat source and the fixing member is rotated by a predetermined amount or more after the fixing member is halted.