Abstract:
A method for temporarily manipulating an operation of an object in accordance with a touch pressure or a touch area may be provided. The method includes: operating the object at a first state; detecting at least one of a magnitude of the touch pressure and a size of the touch area when the touch is input to a touch panel; operating the object at a second state of a first operation according to at least one of the magnitude of the touch pressure and the size of the touch area; and operating the object at the first state when the touch is released.
Abstract:
In one embodiment, a touch input device capable of detecting a pressure and a position of a touch on a touch surface is disclosed. The touch input device includes a cover layer of glass, a display panel, and a touch sensor panel fully laminated on the display panel. The device further includes a substrate spaced apart from the display panel and separating the display panel from a circuit board and a battery for operation of the touch input device, and a pressure electrode disposed between the display panel and the substrate. Drive electrodes are formed on one side of an insulation layer, and receiving electrodes are formed on the other side of the insulation layer. Further, a distance between the substrate and the display panel is maintained by a double adhesive tape formed on edge portions of the substrate and the display panel when no pressure is applied.
Abstract:
A touch panel input device and an input detection method thereof are provided. The touch panel input device including: a driving signal supplier which simultaneously applies a first driving signal and a second driving signal to at least two of the plurality of driving signal electrodes respectively, wherein the first and second driving signals include a plurality of pulses in a first interval and a second interval respectively, wherein, in one of the first and second intervals, the plurality of pulses of the second driving signal is applied differently from the plurality of pulses of the first driving signal; and a signal sensor receiving sensing signals including information on capacitances of at least two of the plurality of the node capacitors from the plurality of sensing signal electrodes in the first and second intervals.
Abstract:
A method for distinguishing a touch type in a touch input device including a touch screen may be provided that includes: determining whether a touch on the touch screen includes a time interval during which the touch has a pressure greater than a first pressure within a first time period; and distinguishing the touch type in accordance with whether or not the touch includes a time interval during which the touch has a pressure greater than the first pressure within the first time period.
Abstract:
Disclosed are a touch screen controller and a method for controlling the same. The touch screen controller includes: a driving part which transmits a driving signal to a touch screen including a plurality of sensing cells; a touch signal sensing unit which transmits a sensing signal to the touch screen and transmits information on a capacitance change pattern of a predetermined area including at least two sensing cells among the plurality of the sensing cells by the driving signal and the sensing signal in correspondence with an object which has touched the touch screen; and a control unit which determines a kind of the object which touches the touch screen, by receiving the information on the capacitance change pattern from the touch signal sensing unit, sets a threshold in correspondence with the determined kind of the object, and determines that a touch signal is generated when a capacitance change amount greater than the set threshold is detected in one sensing cell or a group of sensing cells among the plurality of the sensing cells included in the touch screen.
Abstract:
A touch input device capable of detecting a pressure of a touch on a touch surface includes: a display module and a pressure electrode. The display module includes a display panel and a reference potential layer. An electrical signal, which is changed according to a capacitance between the pressure electrode and the reference potential layer, is detected from the pressure electrode and the capacitance changes depend on a change of a relative distance between the pressure electrode and the reference potential layer, such that the pressure of the touch is detected based on the capacitance.
Abstract:
A touch input device capable of detecting a pressure of a touch on a touch surface includes: a display module including a display panel; a substrate which is located under the display module and is spaced apart from the display module by a spacer layer; and a pressure electrode. An electrical signal, which is changed according to a capacitance between the pressure electrode and the substrate, is detected from the pressure electrode, and the capacitance changes depend on a change of a relative distance between the pressure electrode and the substrate, such that the pressure of the touch is detected based on the capacitance.
Abstract:
Disclosed is a capacitance sensor including: a capacitance-voltage/current converter which converts a capacitance value of a sense capacitor into a voltage signal or a current signal by using an input signal; a multiplier which applies a weight to an output signal of the capacitance-voltage/current converter and outputs the weighted output signal; and an accumulator which accumulates continuously the output signal of the multiplier.
Abstract:
A smartphone includes a cover layer; an LCD panel which is located under the cover layer and includes a liquid crystal layer, and a first glass layer and a second glass layer between which the liquid crystal layer is placed, wherein at least a portion of a touch sensor which senses touch in a capacitive manner is located between the first glass layer and the second glass layer; a backlight unit which is located under the LCD panel; a pressure electrode which is located under the backlight unit; and a shielding member which is located under the pressure electrode.
Abstract:
A smartphone includes: a cover layer; a display module, and comprises a component configured to cause the LCD panel to perform a display function; a pressure electrode which is located under the display module; and a shielding member which is located under the pressure electrode. At least a portion of a touch sensor which senses touch in a capacitive manner is located in the display module.