Multiplexing codebooks generated for transmissions having different service types

    公开(公告)号:US11451284B2

    公开(公告)日:2022-09-20

    申请号:US16829972

    申请日:2020-03-25

    Abstract: Methods, systems, and devices for wireless communications are described. A user equipment (UE) may monitor for a first transmission of a first service type (e.g., enhanced mobile broadband (eMBB)) and a second transmission of a second service type (e.g., ultra-reliable low-latency communication (URLLC)). The UE may identify a feedback codebook size for the first service type. The UE may multiplex a first feedback codebook having the identified feedback codebook size and generated for the first transmission with a second feedback codebook generated for the second transmission. Multiplexing the first and second feedback codebooks may produce a multiplexed feedback codebook. In some cases, the UE may perform the multiplexing based on a feedback multiplexing condition being satisfied. The UE may transmit the multiplexed feedback codebook in a control channel (e.g., a physical uplink control channel (PUCCH)) or a shared data channel (e.g., a physical uplink shared channel (PUSCH)).

    Methods and apparatus for orthogonal sequence transmission with frequency hopping

    公开(公告)号:US11444667B2

    公开(公告)日:2022-09-13

    申请号:US17235872

    申请日:2021-04-20

    Abstract: The present disclosure relates to methods and devices for wireless communication including an apparatus, e.g., a UE and/or base station. The apparatus can determine a first orthogonal matrix and a second orthogonal matrix, the first orthogonal matrix including a size of M×N1 with M×N1 rows and M×N1 columns, the second orthogonal matrix including a size of M×N2 with M×N2 rows and M×N2 columns. The apparatus can also determine a first codebook based on the first orthogonal matrix and a second codebook based on the second orthogonal matrix, the first codebook and the second codebook including a plurality of codepoints. Also, the apparatus can transmit a first signal and a second signal, the first signal including a first codepoint of the plurality of codepoints in the first codebook, the second signal including a second codepoint of the plurality of codepoints in the second codebook.

    Techniques and apparatuses for modulation order control for an uplink channel

    公开(公告)号:US11438881B2

    公开(公告)日:2022-09-06

    申请号:US16121173

    申请日:2018-09-04

    Abstract: Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, while the UE is using a first modulation order for a physical uplink control channel, a signaling message that identifies a second modulation order, for the physical uplink control channel. The UE may provide the physical uplink control channel using the second modulation order. In some aspects, a base station may provide, while a UE is using a first modulation order for a physical uplink control channel, a signaling message that identifies a second modulation order, for the physical uplink control channel. The base station may receive the physical uplink control channel using the second modulation order. Numerous other aspects are provided.

    Increasing physical random access capacity using orthogonal cover codes

    公开(公告)号:US11432332B2

    公开(公告)日:2022-08-30

    申请号:US16652140

    申请日:2018-09-25

    Abstract: Methods, systems, and devices for increasing physical random access channel (PRACH) capacity using orthogonal cover codes (OCCs) in wireless communications systems are described. A base station may transmit a PRACH configuration that indicates PRACH resources for system access, for example, in a system information block (SIB). A user equipment (UE) may receive the PRACH configuration, and may identify PRACH resources that support OCCs for system access. For example, PRACH configurations with small time domain spacing between PRACH resources may support OCCs. The UE may determine whether to transmit random access (RACH) preamble messages using OCCs in the PRACH resources, and may transmit a RACH preamble message to the base station based on the determination. In some cases, the base station may additionally indicate PRACH resources not configured for OCCs, and the UE may determine which set of resources to transmit in based on one or more parameters.

    SCALABLE PROCESS FOR INDICATING BEAM SELECTION

    公开(公告)号:US20220271819A1

    公开(公告)日:2022-08-25

    申请号:US17744373

    申请日:2022-05-13

    Abstract: Methods, systems, and devices for wireless communication are described. In wireless systems supporting multiple-input, multiple-output (MIMO) transmissions, devices may implement beam-forming to improve reliability of communications. A user equipment (UE) may select a set of beams, and corresponding beam indices, for communication based on reference signals received from a base station. The UE may determine values corresponding to each of the beam indices using a scalable set of tables. For example, the UE may select a subset of the tables based on the number of selected beams, and may determine the values based on these tables. In this way, the UE may efficiently store sets of tables for multiple different configurations. The UE may sum the corresponding values to obtain a combination index value, and may transmit the combination index value to the base station. The base station may determine the selected beams based on this combination index value.

    System and method for mapping uplink control information

    公开(公告)号:US11412534B2

    公开(公告)日:2022-08-09

    申请号:US15687388

    申请日:2017-08-25

    Abstract: A user equipment (UE) may map a demodulation reference signal (DMRS) sequence to a first symbol in a set of resource blocks (RBs) of an uplink long burst, and the first symbol may occur at the beginning of the uplink long burst. The DMRS sequence may be “front-loaded” in the uplink long burst. The DMRS sequence may be dependent upon RB locations. When the DMRS sequence is mapped to the beginning of an uplink long burst, uplink control information (UCI) may be mapped in a physical uplink shared channel (PUSCH). A UE may map UCI in a PUSCH after the DMRS sequence is mapped to the beginning of the uplink long burst. When the base station receives an uplink long burst including the front-loaded DMRS and the UCI mapped in the PUSCH, the base station may identify the DMRS for channel estimation/interference cancelation of the UCI carried on the PUSCH.

Patent Agency Ranking