Abstract:
Methods, systems, and devices for wireless communication are described. Wireless devices may use enhanced carrier aggregation (eCA) to increase the throughput of a communications link, and control schemes for reducing signaling overhead may be employed to support eCA operation. For instance, downlink control information (DCI) supporting resource grants on a plurality of component carriers (CC) may be provided. These joint grants of resources may be used in addition to individual resource grants. A resource allocation granularity associated with the joint grant of resources may be based on the number of CCs scheduled by a resource grant message. The resource allocation granularity may be a function of whether uplink or downlink CCs are scheduled, and it may be determined based on a location of or channel associated with the resource grant message. A receiving device may identify allocated resources based on the scheduled CCs and resource allocation granularity.
Abstract:
Methods, systems, and devices are described for wireless communication at a UE. A wireless devices may use a shared or unlicensed spectrum configuration based on a prioritization scheme for the shared frequency resources. The prioritization scheme may assign a priority to different operators and may enable devices associated with a prioritized operator to access the shared band over non-prioritized devices. For example, a non-prioritized device may win the channel and begin communicating over the shared or unlicensed spectrum. The non-prioritized device may then periodically cease transmission for a set interval (i.e., a preemption opportunity) and listen for an indication that a prioritized device wishes to use the channel. If a prioritized device begins transmitting (or, in some cases, if the prioritized device transmits a medium preemption indication) the non-prioritized device may relinquish control of the channel.
Abstract:
Methods, systems, and devices are described for wireless communication in a system that supports enhanced carrier aggregation (eCA). An eCA configuration with a large number of component carriers (CCs) may include CCs grouped into channel state information (CSI) reporting groups. Channel state reports for the CCs in each group may be reported together. In some cases, individual CC reports may be multiplexed into a single report, and in other cases a single channel state report may contain information related to each CC in the group. The combined reports may be transmitted over an uplink control channel or an uplink data channel, or both. Collisions between reports may be resolved based on the reporting type of the groups or the serving cell indices of the CCs in the group.
Abstract:
Methods and apparatus for beamforming for femtocells, such as in LTE wireless networks, to provide inter-cell coordination and interference mitigation are disclosed. A macrocell user equipment (UE) may determine information regarding an interfering femtocell node, such as a home eNodeB (HeNB). The information may be sent directly or indirectly, such as by a backhaul communication link, to the HeNB. The HeNB may adjust an output based on the information. The information may include spatial channel information, which may be used for beamforming at the HeNB output so as to mitigate interference in the direction of the UE.
Abstract:
Techniques are described for wireless communication. A first method includes contending for access to a first channel of a radio frequency spectrum, and transmitting, upon winning contention for access to the first channel, a first channel reservation indication. The contending may be performed by a first node operating according to a first radio access technology. The first channel reservation indication may be understood by a second node operating according to a second radio access technology.
Abstract:
Techniques for managing handovers in an unlicensed radio frequency spectrum band may provide that a serving base station may receive one or more base station measurement reports and one or more UE measurement reports. The base station measurement reports may include information associated with one or more devices that may transmit signals using an unlicensed radio frequency spectrum band. The UE measurement reports may include information associated with one or more devices that may generate interfering signals at the UE, which may include interfering signals from one or more devices that are not detected by the serving base station. The serving base station may, in some examples, determine whether to handover the UE to a second base station based at least in part on the base station measurement report and the UE measurement report.
Abstract:
A communication environment with carrier aggregation (CA) is disclosed in which a UE is configured for communication at a first time with a first network node via a primary component carrier (PCC) and a second network node via a secondary CC (SCC). At a second time, the UE is configured for communication with a third network node via the SCC at a second time. The UE maintains communication with the first network node via the PCC without triggering handover at the UE during the establishing communication with the third network node.
Abstract:
Certain aspects of the present disclosure provide procedures for power sharing, scaling, and power headroom reporting in dual connectivity operations. According to certain aspects, a method of wireless communication by a user equipment (UE) is provided. The method generally includes determining a maximum available transmit power of the UE, semi-statically configuring a first minimum guaranteed power available for uplink transmission to a first base station and a second minimum guaranteed power available for uplink transmission to a second base station, and dynamically determining a first maximum transmit power available for uplink transmission to the first base station and a second maximum transmit power available for uplink transmission to the second base station based, at least in part, on the maximum available transmit power of the UE, the first minimum guaranteed power, and the second minimum guaranteed power.
Abstract:
Techniques are described for wireless communications utilizing multiple clear channel assessment (CCA) procedures for access to a radio frequency spectrum band. A first CCA procedure is performed to determine availability of the radio frequency spectrum band and to contend for use of the radio frequency spectrum band among a number of coordinated operators transmitting on the radio frequency spectrum band. A successful first CCA procedure results in winning the contention for the radio frequency spectrum band for a transmission period that is coordinated among the number of coordinated operators. Upon the successful first CCA procedure, a second CCA procedure is performed during a discontinuous transmission (DTX) period in the transmission period to determine continued availability of the radio frequency spectrum band. The timing of the DTX periods is determined based on timing of radio transmissions having priority use of the radio frequency spectrum band.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may employ a multiplexing configuration based on latency and efficiency considerations. The base station may transmit a resource grant, a signal indicating the length of a downlink (DL) transmission time interval (TTI), and a signal indicating the length of a subsequent uplink (UL) TTI to one or more user equipment (UEs). The base station may dynamically select a new multiplexing configuration by, for example, setting the length of an UL TTI to zero or assigning multiple UEs resources in the same DL TTI. Latency may also be reduced by employing block feedback, such as block hybrid automatic repeat request (HARQ) feedback. A UE may determine and transmit HARQ feedback for each transport block (TB) of a set of TBs, which may be based on a time duration of a downlink TTI.