Abstract:
Disclosed herein is a multi-compartment type refrigerator and method for controlling the same. The refrigerator includes a plurality of storage compartments. A plurality of evaporators are each positioned in each of the storage compartments, respectively. A compressor supplies refrigerant to the evaporators through a branched refrigerant conduit. A plurality of opening/closing valves are each positioned on a refrigerant conduit upstream of each of the evaporators for selectively controlling supply of refrigerant to the evaporators. Reference compartment defining means defines as a reference storage compartment one of the storage compartments that has a relatively great load. Control means controls starting of the compressor depending on a change of a temperature of the reference storage compartment.
Abstract:
The control settings of a vehicle climate control system are adjusted in accordance with a relative ambient humidity correction to compensate for variations in relative ambient humidity, and the correction is based on normally measured system operating parameters. The ambient humidity correction value is determined according to a difference between the cooling performance of the system and the ambient heat energy absorbed by the system. The cooling performance of the system is determined during an initial period of vehicle operation based on the time required to reduce the initial evaporator temperature by a predetermined amount. Once steady-state operation of the system is achieved, the cooling performance of the system is determined by the steady-state deviation of the evaporator outlet air temperature from a target temperature of the system. The ambient heat energy absorbed by the system is determined based on the temperature of the ambient air and the flow rate of air through the evaporator.
Abstract:
A method and apparatus for cooling MRI system components including components that reside inside an RF shield such as an RF coil, a receiver coil, a patient support table and a patient enclosure wall wherein the cooling system employs a liquid coolant essentially devoid of protons and to that end, essentially devoid of hydrogen atoms.
Abstract:
A device is disclosed for reducing overheating in a passenger compartment of a parked vehicle. The device has a temperature sensor, a temperature comparator, and a control system in electrical communication with the comparator for controlling the actuation and operation of an existing air conditioner fan within the vehicle. The control system incorporates a power supply management arrangement designed to draw energy in pulses from a battery unit of the vehicle to energize the motor when the temperature in the passenger compartment exceeds a predetermined level, and to cease drawing energy when the temperature falls below the predetermined level.
Abstract:
An air-conditioning system for a motor vehicle has a circuit (14) which is capable of being changed over from cooling to heating. The system has a heater (22), through which the air to be conditioned flows, a cooling heat exchanger (18) acting as an evaporator in the cooling mode, and an additional heat exchanger (20) capable of being selectively used for providing auxiliary heat in the heating mode. The additional heat exchanger can be advantageously utilized by operating it as an auxiliary cooling heat exchanger, acting as an evaporator, in the cooling mode.